【新高考复习】专题09 概率与统计——2020年高考真题和模拟题理科数学分项汇编(学生版)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

专题09概率与统计1.【2020年高考全国Ⅰ卷理数】某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:°C)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)iixyi得到下面的散点图:由此散点图,在10°C至40°C之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是A.yabxB.2yabxC.exyabD.lnyabx2.【2020年高考全国II卷理数】在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者A.10名B.18名C.24名D.32名3.【2020年高考全国III卷理数】在一组样本数据中,1,2,3,4出现的频率分别为1234,,,pppp,且411iip,则下面四种情形中,对应样本的标准差最大的一组是A.14230.1,0.4ppppB.14230.4,0.1ppppC.14230.2,0.3ppppD.14230.3,0.2pppp4.【2020年高考山东】某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是A.62%B.56%C.46%D.42%5.【2020年高考山东】信息熵是信息论中的一个重要概念.设随机变量X所有可能的取值为1,2,,n,且1()0(1,2,,),1niiiPXipinp,定义X的信息熵21()logniiiHXpp.A.若n=1,则H(X)=0B.若n=2,则H(X)随着1p的增大而增大C.若1(1,2,,)ipinn,则H(X)随着n的增大而增大D.若n=2m,随机变量Y所有可能的取值为1,2,,m,且21()(1,2,,)jmjPYjppjm,则H(X)≤H(Y)6.【2020年高考江苏】已知一组数据4,2,3,5,6aa的平均数为4,则a的值是▲.7.【2020年高考江苏】将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____.8.【2020年高考天津】从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为A.10B.18C.20D.369.【2020年高考天津】已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________.10.【2020年高考浙江】盒中有4个球,其中1个红球,1个绿球,2个黄球.从盒中随机取球,每次取1个,不放回,直到取出红球为止.设此过程中取到黄球的个数为,则(0)P_______,()E_______.11.【2020年高考全国Ⅰ卷理数】甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12,(1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率;(3)求丙最终获胜的概率.12.【2020年高考全国Ⅰ卷理数】某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(xi,yi)(i=1,2,…,20),其中xi和yi分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160iix,2011200iiy,2021)8(0iixx,2021)9000(iiyy,201)()800(iiiyyxx.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(xi,yi)(i=1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数12211)(()()()iiininiinixyrxyxyxy,21.414.13.【2020年高考全国III卷理数】某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次锻炼人次空气质量等级[0,200](200,400](400,600]1(优)216252(良)510123(轻度污染)6784(中度污染)720(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次400空气质量好空气质量不好附:K2=2)nadbcabcdacbd,P(K2≥k)0.0500.0100.001k3.8416.63510.828.14.【2020年高考山东】为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和2SO浓度(单位:3μg/m),得下表:2SOPM2.5[0,50](50,150](150,475][0,35]32184(35,75]6812(75,115]3710(1)估计事件“该市一天空气中PM2.5浓度不超过75,且2SO浓度不超过150”的概率;(2)根据所给数据,完成下面的22列联表:2SOPM2.5[0,150](150,475][0,75](75,115](3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与2SO浓度有关?附:22()()()()()nadbcKabcdacbd,2()PKk0.0500.0100.001k3.8416.63510.82818.【2020年高考北京】某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:男生女生支持不支持支持不支持方案一200人400人300人100人方案二350人250人150人250人假设所有学生对活动方案是否支持相互独立.(Ⅰ)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(Ⅲ)将该校学生支持方案的概率估计值记为0p,假设该校年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为1p,试比较0p与1p的大小.(结论不要求证明)1.【2020·广东省高三二模】高二某班共有45人,学号依次为1、2、3、…、45,现按学号用系统抽样的办法抽取一个容量为5的样本,已知学号为6、24、33的同学在样本中,那么样本中还有两个同学的学号应为A.15,43B.15,42C.14,43D.14,422.【2020·黑龙江省大庆实验中学高三月考(理)】设不等式组030xyxy表示的平面区域为,若从圆C:224xy的内部随机选取一点P,则P取自的概率为A.524B.724C.1124D.17243.【2020·河南省高三三模】“二进制”来源于我国古代的《易经》,该书中有两类最基本的符号:“─”和“﹣﹣”,其中“─”在二进制中记作“1”,“﹣﹣”在二进制中记作“0”.如符号“☱”对应的二进制数011(2)化为十进制的计算如下:011(2)=0×22+1×21+1×20=3(10).若从两类符号中任取2个符号进行排列,则得到的二进制数所对应的十进制数大于2的概率为A.12B.13C.23D.144.【2020·河南省高三三模】随着2022年北京冬奥会临近,中国冰雪产业快速发展,冰雪运动人数快速上升,冰雪运动市场需求得到释放,将引领户外用品行业市场增长.下面是2012年至2018年中国雪场滑雪人次(万人次)与同比增长率的统计图,则下面结论中不正确的是A.2013年至2018年,中国雪场滑雪人次逐年增加B.2013年至2015年,中国雪场滑雪人次和同比增长率均逐年增加C.2018年与2013年相比,中国雪场滑雪人次的同比增长率近似相等,所以同比增长人数也近似相等D.2018年与2016年相比,中国雪场滑雪人次增长率约为30.5%5.【2020·山东省邹城市第一中学高三其他】2020年初,新型冠状病毒(19COVID)引起的肺炎疫情爆发以来,各地医疗机构采取了各种针对性的治疗方法,取得了不错的成效,某地开始使用中西医结合方法后,每周治愈的患者人数如下表所示:周数(x)12345治愈人数(y)2173693142由表格可得y关于x的二次回归方程为2ˆ6yxa,则此回归模型第4周的残差(实际值与预报值之差)为A.5B.4C.1D.06.【2020·四川省绵阳南山中学高三一模】从标号分别为1、2、3、4、5的5张标签中随机抽取一张,放回后再随机抽取一张,则抽得的第一张标签的标号与第二张标签的标号恰好相差1的概率为A.45B.25C.425D.8257.【2020·四川省阆中中学高三其他】中国古代十进制的算筹计数法,在数学史上是一个伟大的创造,算筹实际上是一根根同长短的小木棍.如图,是利用算筹表示数1-9的一种方法.例如:3可表示为“≡”,26可表示为“=⊥”,现有6根算筹,据此表示方法,若算筹不能剩余,则可以用1-9这9个数字表示两位数中,能被3整除的概率是A.518B.718C.716D.5168.【2020·山西省高三月考】勒洛三角形是具有类似圆的“定宽性”的曲线,它是由德国机械工程专家、机构运动学家勒洛首先发现,其作法是:以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形.如图中的两个勒洛三角形,它们所对应的等边三角形的边长比为1:3,若从大的勒洛三角形中随机取一点,则此点取自小勒洛三角形内的概率是A.13B.32(3)C.19D.34(3)9.【2020·山东省邹城市第一中学高三其他】下列命题中假命题是A.若随机变量服从正态分布21,N,40.79P,则20.21P;B.已知直线l平面,直线//m平面,则“//”是“lm”的必要不充分条件;C.若//ab,则a在b方向上的正射影的数量为arD.命题:0,1xpxex的否定:0,1xpxex10.【2020·上海高三二模】某社区利用分层抽样的方法从140户高收入家庭、280户中等收入家庭、80户低收入家庭中选出100户调查社会购买力的某项指标,则中等收入家庭应

1 / 14
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功