【新高考复习】专题6.4 正弦定理、余弦定理的应用 2022年高考数学一轮复习讲练测(新教材新

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

专题6.4正弦定理、余弦定理的应用新课程考试要求掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.核心素养本节涉及所有的数学核心素养:逻辑推理(多例)、直观想象(多例)、数学运算(多例)等.考向预测(1)测量距离问题;(2测量高度问题;(3)测量角度问题.(4)主要是利用定理等知识和方法解决一些与测量和几何计算有关的问题,关键是弄懂有关术语,认真理解题意.三角形中的应用问题,主要是结合直角三角形、正方形等,考查边角及面积的计算,与平面向量、解析几何、立体几何等结合考查,也有与导数结合考查的情况.【知识清单】知识点1.正弦定理正弦定理:asinA=bsinB=csinC=2R,其中R是三角形外接圆的半径.由正弦定理可以变形为:a∶b∶c=sinA∶sinB∶sinC;a=2Rsin_A,b=2Rsin_B,c=2Rsin_C;sinA=a2R,sinB=b2R,sinC=c2R等形式,以解决不同的三角形问题.面积公式S=12absinC=12bcsinA=12acsinB知识点2.余弦定理余弦定理:,,.变形公式cosA=b2+c2-a22bc,cosB=a2+c2-b22ac,osC=a2+b2-c22ab知识点3.实际问题中的有关概念(1)仰角和俯角:在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图1).(2)方位角:从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图2).2222cosabcabC2222cosbcaacA2222coscabacB(3)方向角:相对于某一正方向的水平角(如图3)①北偏东α°即由指北方向顺时针旋转α°到达目标方向.②北偏西α°即由指北方向逆时针旋转α°到达目标方向.③南偏西等其他方向角类似.(4)坡度:①定义:坡面与水平面所成的二面角的度数(如图4,角θ为坡角).②坡比:坡面的铅直高度与水平长度之比(如图4,i为坡比).【考点分类剖析】考点1与平面向量、解析几何、立体几何结合【典例1】(2021·四川成都市·高三三模(文))已知A,B是圆224xy上的两个动点,且满足23AB,点3,6P,则PAPB的最小值为()A.12B.32C.1D.726【典例2】(2021·山东省青岛第一中学高一期中)如图所示,为测量山高,MN选择A和另一座山的山顶C为测量观测点,从A点测得M点的仰角60,MANC点的仰角30CAB以及75,MAC从C点测得60MCA,若山高1002BC米,则山高MN等于()A.300米B.360米C.240米D.320米【典例3】(2020·江苏高考真题)在△ABC中,43=90ABACBAC,,∠,D在边BC上,延长AD到P,使得AP=9,若3()2PAmPBmPC(m为常数),则CD的长度是________.【变式探究】1.(2021·黑龙江哈尔滨市·哈尔滨三中高三其他模拟(理))某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:在C处(点C在水平地面ABO的下方,O为CH与水平地面ABO的交点)进行该仪器的垂直弹射,水平地面上两个观察点A,B两地相距100米,60BAC,其中A到C的距离比B到C的距离远40米.A地测得该仪器在C处的俯角为30OAC,A地测得最高点H的仰角为45OAH,则该仪器的垂直弹射高度CH为()A.210米B.2103米C.2102103米D.420米2.(2021·浙江高二期末)已知a、b、c分别为ABC的三个内角A、B、C的对边,且2222sin30abCabc,点D是边AB上的中点,若1CD,则ABC的面积最大值为_______.3.(高考真题)如图,在某海滨城市𝑂附近的海面上正形成台风.据气象部门检测,目前台风中心位于城市𝑂的南偏东15°方向200km的海面𝑃处,并以10km/h的速度向北偏西75°方向移动.如果台风侵袭的范围为圆心区域,目前圆形区域的半径为100km,并以20km/h的速度不断增大.几小时后该城市开始受到台风侵袭(精确到0.1h)?考点2测量距离问题【典例4】(2021·永丰县永丰中学高一期末)为了测量河对岸两点C,D间的距离,现在沿岸相距2km的两点A,B处分别测得105BAC,60,45,60BADABCABD,则,CD间的距离为________.【总结提升】测量距离问题,归纳起来常见的命题角度有:(1)两点都不可到达;(2)两点不相通的距离;(3)两点间可视但有一点不可到达.【变式探究】(2021·合肥一六八中学高三其他模拟(文))“湖畔波澜飞,耕耘战鼓催”,合肥一六八中学的一草一木都见证了同学们的成长.某同学为了测量澜飞湖两侧C,D两点间的距离,除了观测点C,D外,他又选了两个观测点12,PP,且12PPa,已经测得两个角1221,PPDPPD,由于条件不足,需要再观测新的角,则利用已知观测数据和下面三组新观测的角的其中一组,就可以求出C,D间距离的有()组①1DPC和1DCP;②12PPC和12PCP;③1PDC和1DCPA.0B.1C.2D.3考点3测量高度问题【典例5】(2021·北京高三其他模拟)魏晋南北朝(公元220581)时期,中国数学在测量学取得了长足进展.刘徽提出重差术,应用中国传统的出入相补原理,通过多次观测,测量山高水深等数值,进而使中国的测量学达到登峰造极的地步,超越西方约一千年,关于重差术的注文在唐代成书,因其第一题为测量海岛的高度和距离(图1),故题为《海岛算经》受此题启发,小清同学依照此法测量奥林匹克公园奥林匹克塔的高度和距离(示意图如图2所示),录得以下是数据(单位:米):前表却行1DG,表高2CDEF,后表却行3FH,表间244DF.则塔高AB__________米,前表去塔远近BD__________米.【总结提升】求解高度问题的三个关注点(1)在处理有关高度问题时,要理解仰角、俯角(在铅垂面上所成的角)、方向(位)角(在水平面上所成的角)是关键.(2)在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易搞错.(3)注意山或塔垂直于地面或海平面,把空间问题转化为平面问题.【变式探究】(全国高考真题)如图,为测量出高MN,选择A和另一座山的山顶C为测量观测点,从A点测得M点的仰角060MAN,C点的仰角045CAB以及075MAC;从C点测得060MCA.已知山高100BCm,则山高MN__________m.考点4测量角度问题【典例6】(2021·云南民族大学附属中学高三月考(理))一张台球桌形状是边长为4的正六边形ABCDEF,已知一个小球从AB边的中点P击出后,击中BC边上某点Q,之后依次碰击CD,DE,EF,FA各边,最后击中AB边上的点R,且1AR,设BPQ,则tan___________.【总结提升】1.解决角度问题的注意事项(1)测量角度时,首先应明确方位角及方向角的含义.(2)求角的大小时,先在三角形中求出其正弦或余弦值.(3)在解应用题时,要根据题意正确画出示意图,通过这一步可将实际问题转化为可用数学方法解决的问题,解题中也要注意体会正、余弦定理“联袂”使用的优点.2.测量角度问题的基本思路测量角度问题的关键是在弄清题意的基础上,画出表示实际问题的图形,并在图形中标出有关的角和距离,再用正弦定理或余弦定理解三角形,最后将解得的结果转化为实际问题的解.提醒:方向角是相对于某点而言的,因此在确定方向角时,必须先弄清楚是哪一个点的方向角.【变式探究】某沿海四个城市、、、的位置如图所示,其中,,,,,位于的北偏东方向.现在有一艘轮船从出发ABCD60ABC135BCD80nmileAB40303nmileBC2506nmileCDDA75A以的速度向直线航行,后,轮船由于天气原因收到指令改向城市直线航行,收到指令时城市对于轮船的方位角是南偏西度,则__________.考点5应用正弦定理、余弦定理解决实际问题【典例7】(2021·浙江高三期末)如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50m/min.在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从B匀速步行到C.假设缆车匀速直线运行的速度为130m/min,山路AC长为1260m,经测量,4sin5C,63sin65B,BÐ为钝角.(1)求索道AB的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?【规律方法】利用解三角形知识解决实际问题要注意根据条件画出示意图,结合示意图构造三角形,然后转化为解三角形的问题进行求解.【变式探究】(2021·浙江高一期末)目前,中国已经建成全球最大的5G网络,无论是大山深处还是广袤平原,处处都能见到5G基站的身影.如图,某同学在一条水平公路上观测对面山顶上的一座5G基站AB,已知基站高50mAB,该同学眼高1.5m(眼睛到地面的距离),该同学在初始位置C处(眼睛所在位置)测得基站底部B的仰角为37,测得基站顶端A的仰角为45.50nmile/hD60minCCsin(1)求出山高BE;(2)如图,当该同学面向基站AB前行时(保持在同一铅垂面内),记该同学所在位置M处(眼睛所在位置)到基站AB所在直线的距离mMDx,且记在M处观测基站底部B的仰角为,观测基站顶端A的仰角为.试问当x多大时,观测基站的视角AMB最大?参考数据:sin80.14,sin370.6,sin450.7,sin1270.8

1 / 8
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功