1《集合》专项练习参考答案1.(2016全国Ⅰ卷,文1,5分)设集合,,则A∩B=()(A){1,3}(B){3,5}(C){5,7}(D){1,7}【解析】集合A与集合B的公共元素有3,5,故}5,3{BA,故选B.2.(2016全国Ⅱ卷,文1,5分)已知集合,则A∩B=()(A)(B)(C)(D)【解析】由29x得33x,所以{|33}Bxx,因为{1,2,3}A,所以{1,2}AB,故选D.3.(2016全国Ⅲ卷,文1,5分)设集合{0,2,4,6,8,10},{4,8}AB,则ABð=()(A){48},(B){026},,(C){02610},,,(D){0246810},,,,,【解析】由补集的概念,得{0,2,6,10}ABð,故选C.4.(2016全国Ⅰ卷,理1,5分)设集合,,则A∩B=()(A)(B)(C)(D)【解析】对于集合A:解方程x2-4x+3=0得,x1=1,x2=3,所以A={x|1<x<3}(大于取两边,小于取中间).对于集合B:2x-3>0,解得x>23.3{|3}2ABxx.选D.5.2016全国Ⅱ卷,理1,5分)已知(3)(1)izmm在复平面内对应的点在第四象限,则实数m的取值范围是()(A)(31),(B)(13),(C)(1,)+(D)(3)-,【解析】要使复数z对应的点在第四象限,应满足3010mm,解得31m,故选A.6.(2016全国Ⅲ卷,理1,5分)设集合(x2)(x3)0,T0Sxxx,则S∩T=()(A)[2,3](B)(-,2]U[3,+)(C)[3,+)(D)(0,2]U[3,+)7.(2016北京,文1,5分)已知集合{|24},{|35}AxxBxxx或,则AB()(A){|25}xx(B){|45}xxx或(C){|23}xx(D){|25}xxx或【解析】画数轴得,,所以,故选C.8.(2016北京,理1,5分)已知集合,,则()(A)(B)(C)(D)【解析一】对于集合A:(解绝对值不等的常用方法是两边同时平方)|x|<2,两边同时平方{1,3,5,7}A{|25}Bxx{123}A,,,2{|9}Bxx{210123},,,,,{21012},,,,{123},,{12},2{|430}Axxx{|230}Bxx3(3,)23(3,)23(1,)23(,3)26234510(2,3)AB{|||2}Axx{1,0,1,2,3}BAB{0,1}{0,1,2}{1,0,1}{1,0,1,2}2得x2<4,解方程x2=4得,x1=-2,x2=2,所以A={x|-2<x<2}(大于取两边,小于取中间).所以A∩B={-1,0,1}.故选C.【解析二】对于集合A:(绝对值不等式解法二:|x|<2-2<x<2).A={x|-2<x<2}.所以A∩B={-1,0,1}.故选C.9.(2016上海,文理1,5分)设xR,则不等式31x的解集为_______.【答案】(24),【解析】试题分析:421311|3|xxx,故不等式1|3|x的解集为)4,2(.【解析一】对不等式31x:(解绝对值不等的常用方法是两边同时平方)|x-3|<1,两边同时平方得(x-3)2<1,解方程(x-3)2=1得,x1=2,x2=4,所以A={x|2<x<4}.【解析二】对于集合A:(绝对值不等式解法二:|x-3|<1-1<x-3<1,解得2<x<4).A={x|2<x<4}.10.(2016山东,文1,5分)设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}UAB,则()UABð=(A){2,6}(B){3,6}(C){1,3,4,5}(D){1,2,4,6}【答案】A11.(2016山东,理2,5分)设集合2{|2,},{|10},xAyyxBxxR则A∪B=()(A)(1,1)(B)(0,1)(C)(1,)(D)(0,)【答案】C【解析】对于集合A:∵y=2x>0,∴A={y|y>0}.对于集合B:∵x2-1=0,解得x=±1,∴B={x|-1<x<1}(大于取两边,小于取中间).∴A∪B=(1,)12.(2016四川,文2,5分)设集合A={x|1≤x≤5},Z为整数集,则集合A∩Z中元素的个数是(A)6(B)5(C)4(D)3【答案】B【解析】{1,2,3,4,5}AZ,由Z为整数集得Z={…-3,-2,-1,0,1,2,3…}.故AZ中元素的个数为5,选B.13.(2016四川,理1,5分)设集合{|22}Axx,Z为整数集,则AZ中元素的个数是()(A)3(B)4(C)5(D)6【答案】C【解析】由题意,知{2,1,0,1,2}AZ,由Z为整数集得Z={…-3,-2,-1,0,1,2,3…}.故AZ中元素的个数为5,选C.14.(2016天津,文1,5分)已知集合}3,2,1{A,},12|{AxxyyB,则AB=(A)}3,1{(B)}2,1{(C)}3,2{(D)}3,2,1{【答案】A【解析】∵},12|{AxxyyB,∴当x=1时,y=2×1-1=1;当x=2时,y=2×21-103-1=3;当x=3时,y=2×3-1=5.∴{1,3,5},{1,3}BAB.选A.15.(2016天津,理1,5分)已知集合4,3,2,1A,AxxyyB,23,则BA(A)1(B)4(C)3,1(D)4,1【答案】D【解析】∵AxxyyB,23,∴当x=1时,y=3×1-2=1;当x=2时,y=3×2-2=4;当x=3时,y=3×3-2=7;当x=4时,y=4×3-2=10.∴{14710}{14}B=AB=,,,,,.选D.16.(2016浙江,文1,5分)已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则UPQ()ð=()A.{1}B.{3,5}C.{1,2,4,6}D.{1,2,3,4,5}【答案】C17.(2016浙江,理1,5分)已知集合P={𝑥∈𝑅|1≤𝑥≤3},Q={𝑥∈𝑅|𝑥2≥4},则P∪(𝐶𝑅𝑄)=()A.[2,3]B.(-2,3]C.[1,2)D.(−∞,−2]∪[1,+∞)【答案】B【解析】对于集合Q:∵x2=4,解得x=±2,∴B={x|x≤-2或x≥2}(大于取两边,小于取中间).18.(2016江苏,文理1,5分)已知集合{1,2,3,6},{|23},ABxx则=AB_______.【答案】1,2【解析】1,2,3,6231,2ABxx.故答案应填:1,219.(2015全国Ⅰ卷,文1,5分)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5B.4C.3D.2【答案】D【解析】由已知得A={2,5,8,11,14,17,…},又B={6,8,10,12,14},所以A∩B={8,14}.20.(2015全国Ⅱ卷,文1,5分)已知集合A={x|-1<x<2},B={x|0<x<3},则A∪B=()A.(-1,3)B.(-1,0)C.(0,2)D.(2,3)【答案】A【解析】因为A=(-1,2),B=(0,3),所以A∪B=(-1,3),故选A.21.(2014全国Ⅰ卷,文1,5分)已知集合M={x|-1<x<3},N={x|-2<x<1},则M∩N=()A.(-2,1)B.(-1,1)C.(1,3)D.(-2,3)【答案】B【解析】M∩N={x|-1<x<3}∩{x|-2<x<1}={x|-1<x<1}.22.(2014全国Ⅱ卷,文1,5分)已知集合A={-2,0,2},B={x|x2-x-2=0},则A∩B=()A.B.{2}C.{0}D.{-2}4【答案】B【解析】∵集合A={-2,0,2},B={x|x2-x-2=0}={2,-1},∴A∩B={2},故选B.23.(2013全国Ⅰ卷,文1,5分)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4}B.{2,3}C.{9,16}D.{1,2}【答案】A【解析】∵B={x|x=n2,n∈A}={1,4,9,16},∴A∩B={1,4},故选A.24.(2013全国Ⅱ卷,文1,5分)已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N=()A.{-2,-1,0,1}B.{-3,-2,-1,0}C.{-2,-1,0}D.{-3,-2,-1}【答案】C【解析】由题意得M∩N={-2,-1,0}.选C.25.(2012全国卷,文1,5分)已知集合A={x|x2-x-2<0},B={x|-1<x<1},则()(A)AB(B)BA(C)A=B(D)A∩B=【答案】B【解析】A={x|-1<x<2},B={x|-1<x<1},则BA,故选B.26.(2011全国卷,文1,5分)已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有()A.2个B.4个C.6个D.8个【答案】B【解析】由题意得P=M∩N={1,3},∴P的子集为⌀,{1},{3},{1,3},共4个.27.(2010全国卷,文1,5分)已知集合,则(A)(0,2)(B)[0,2](C)|0,2|(D)|0,1,2|【解析】,,选D28.(2009全国卷,文2,5分)设集合A={4,5,7,9},B={3,4,7,8,9},全集,则集合中的元素共有()(A)3个(B)4个(C)5个(D)6个【解析】,.故选A.29.(2008全国卷,文1,5分)已知集合M={x|(x+2)(x-1)0},N={x|x+10},则M∩N=()A.(-1,1)B.(-2,1)C.(-2,-1)D.(1,2)【答案】C【解析】易求得|21,|1MxxNxx∴|21MNxx30.(2007全国卷,文1,5分)设{|210}Sxx,{|350}Txx,则ST=A.B.1{|}2xxC.5{|}3xxD.15{|}23xx【答案】D.2,,|4,|AxxxRBxxxZAB|22,{0,1,2}AxxB0,1,2ABUAB()UABð{3,4,5,7,8,9}AB{4,7,9}(){3,5,8}UABABð