考点24章末检测四一、单选题1、(2021·浙江高三其他模拟)函数在处的导数是()A.B.C.6D.22、(2021·陕西西安市·长安一中高三月考(文))曲线32yxx在1x处的切线方程为()A.20xyB.20xyC.20xyD.20xy3、(2021·淮北市树人高级中学高二期末(文))已知直线yxa与曲线lnyx相切,则a()A.1B.1C.0D.1e4、(2018年高考全国Ⅲ卷理数)函数422yxx的图像大致为5、(2021·常州·一模)设函数2()lnfxaxbx,若函数()fx的图象在点(1,(1)f)处的切线方程为y=x,则函数()yfx的增区间为A.(0,1)B.(0,22)C.(22,)D.(22,1)6、(2021·山东日照市·高三其他模拟)关于函数,的性质,以下说法正确的是()312xy0x6ln22ln2sinxfxx0,xA.函数的周期是B.函数在上有极值C.函数在单调递减D.函数在内有最小值7、(湖南省常德市2021届高三模拟)若ln2ln3ln5235235abc则()A.ln5ln2ln3cabB.ln2ln5ln3acbC.ln3ln5ln2bcaD.ln2ln3ln5abc8、(2021·江苏扬州市高三模拟)已知定义在,00,上的奇函数fx在,0上单调递减,且满足22f,则关于x的不等式sinfxxx的解集为()A.,22,B.2,02,C.,20,2D.2,00,2二、多选题9、(2020届山东师范大学附中高三月考)已知函数()fx的定义域为R且导函数为()fx,如图是函数()yxfx的图象,则下列说法正确的是()A.函数()fx的增区间是(2,0),(2,)B.函数()fx的增区间是(,2),(2,)C.2x是函数的极小值点D.2x是函数的极小值点10、(2021·山东济南市·高三一模)已知函数的图象在处切线的斜率为,则下列说法正确的是()A.B.在处取得极大值C.当时,D.的图象关于点中心对称fx2πfx0,πfx0,fx0,31fxxax2x93afx1x2,1x1,3fxfx()0,111、(2021·山东潍坊市·高三三模)已知函数,则下列结论正确的是()A.的周期为B.的图象关于对称C.的最大值为D.在区间在上单调递减12、(江苏省连云港市2021届高三调研)已知函数sin()exxfxx,则().A.()fx是奇函数B.|()|1fxC.()fx在(1,0)单调递增D.()fx在0,2上存在一个极值点三、填空题13、(2021·山东德州市·高三期末)已知直线是曲线的一条切线,则_________.14、(2021·江苏省新海高级中学高三期末)在平面直角坐标系中,是曲线()上的一个动点,则点到直线的距离的最小值是________.15、(2021·山东青岛市·高三期末)设函数的图象在点处的切线为,若方程有两个不等实根,则实数的取值范围是__________.16、(湖北省九师联盟2021届高三联考)已知函数ln,115,13xxfxxx,若21xx且12fxfx,则12xx的最大值是___________.四、解答题17、(2021·山东济南市·高三一模)已知函数.若,求的最小值;2sinsin2fxxxfx2πyfxπ2xfx332fx2π4π,332yxbln3yxbxOyP9yxx0xP0xy1xfxex01,yaxbxabmm2(1),01,02xaxexfxxaxx2afx18、已知函数f(x)=ax3+x2(a∈R)在x=-43处取得极值.(1)求a的值;(2)若g(x)=f(x)ex,讨论g(x)的单调性.19、(2021·山东烟台市·高三二模)已知函数在处的切线斜率为.(1)确定的值,并讨论函数的单调性;20、(2021·河北张家口市·高三期末)已知函数.(1)当时,求曲线在处的切线方程;(2)若,且在上的最小值为0,求的取值范围.212ln,2fxmxaxxmaR1x22amfx1xfxeax2a1,1f2gxfxxgx0,a21、(2021·山东威海市·高三期末)已知函数.(1)当时,求过点且与曲线相切的直线方程;(2)若,求实数的取值范围.22、(2021·河北唐山市高三三模)已知函数1lnfxxx.(1)求函数fx的单调区间;(2)设0ba,证明:22fafbabf<.xfxeaxa1a0,1yfx0fxa