第4讲直线与圆、圆与圆的位置关系一、选择题1.(2016·全国Ⅱ卷)圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=()A.-43B.-34C.3D.2解析由圆的方程x2+y2-2x-8y+13=0得圆心坐标为(1,4),由点到直线的距离公式得d=|1×a+4-1|1+a2=1,解之得a=-43.答案A2.(2017·长春模拟)过点(3,1)作圆(x-1)2+y2=r2的切线有且只有一条,则该切线的方程为()A.2x+y-5=0B.2x+y-7=0C.x-2y-5=0D.x-2y-7=0解析∵过点(3,1)作圆(x-1)2+y2=r2的切线有且只有一条,∴点(3,1)在圆(x-1)2+y2=r2上,∵圆心与切点连线的斜率k=1-03-1=12,∴切线的斜率为-2,则圆的切线方程为y-1=-2(x-3),即2x+y-7=0.故选B.答案B3.已知圆x2+y2+2x-2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值是()A.-2B.-4C.-6D.-8解析将圆的方程化为标准方程为(x+1)2+(y-1)2=2-a,所以圆心为(-1,1),半径r=2-a,圆心到直线x+y+2=0的距离d=|-1+1+2|2=2,故r2-d2=4,即2-a-2=4,所以a=-4,故选B.答案B4.圆x2+2x+y2+4y-3=0上到直线x+y+1=0的距离为2的点共有()A.1个B.2个C.3个D.4个解析圆的方程化为(x+1)2+(y+2)2=8,圆心(-1,-2)到直线距离d=|-1-2+1|2=2,半径是22,结合图形可知有3个符合条件的点.答案C5.(2017·福州模拟)过点P(1,-2)作圆C:(x-1)2+y2=1的两条切线,切点分别为A,B,则AB所在直线的方程为()A.y=-34B.y=-12C.y=-32D.y=-14解析圆(x-1)2+y2=1的圆心为(1,0),半径为1,以|PC|=(1-1)2+(-2-0)2=2为直径的圆的方程为(x-1)2+(y+1)2=1,将两圆的方程相减得AB所在直线的方程为2y+1=0,即y=-12.故选B.答案B二、填空题6.(2016·全国Ⅲ卷)已知直线l:x-3y+6=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,则|CD|=________.解析设A(x1,y1),B(x2,y2),由x-3y+6=0,x2+y2=12,得y2-33y+6=0,解得y1=3,y2=23,∴A(-3,3),B(0,23).过A,B作l的垂线方程分别为y-3=-3(x+3),y-23=-3x,令y=0,得xC=-2,xD=2,∴|CD|=2-(-2)=4.答案47.(2017·兰州月考)点P在圆C1:x2+y2-8x-4y+11=0上,点Q在圆C2:x2+y2+4x+2y+1=0上,则|PQ|的最小值是________.解析把圆C1、圆C2的方程都化成标准形式,得(x-4)2+(y-2)2=9,(x+2)2+(y+1)2=4.圆C1的圆心坐标是(4,2),半径长是3;圆C2的圆心坐标是(-2,-1),半径是2.圆心距d=(4+2)2+(2+1)2=35.所以,|PQ|的最小值是35-5.答案35-58.(2017·贵阳一模)由直线y=x+1上的一点向圆(x-3)2+y2=1引切线,则切线长的最小值为________.解析设直线上一点为P,切点为Q,圆心为M,则|PQ|即切线长,MQ为圆M的半径,长度为1,|PQ|=|PM|2-|MQ|2=|PM|2-1.要使|PQ|最小,即求|PM|的最小值,此题转化为求直线y=x+1上的点到圆心M的最小距离.设圆心到直线y=x+1的距离为d,则d=|3-0+1|12+(-1)2=22.所以|PM|的最小值为22.所以|PQ|=|PM|2-1≥(22)2-1=7.答案7三、解答题9.(2015·全国Ⅰ卷)已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于M,N两点.(1)求k的取值范围;(2)若OM→·ON→=12,其中O为坐标原点,求|MN|.解(1)易知圆心坐标为(2,3),半径r=1,由题设,可知直线l的方程为y=kx+1,因为l与C交于两点,所以|2k-3+1|1+k21.解得4-73k4+73.所以k的取值范围为4-73,4+73.(2)设M(x1,y1),N(x2,y2).将y=kx+1代入方程(x-2)2+(y-3)2=1,整理得(1+k2)x2-4(1+k)x+7=0.所以x1+x2=4(1+k)1+k2,x1x2=71+k2.OM→·ON→=x1x2+y1y2=(1+k2)x1x2+k(x1+x2)+1=4k(1+k)1+k2+8.由题设可得4k(1+k)1+k2+8=12,解得k=1,所以l的方程为y=x+1.故圆心C在l上,所以|MN|=2.10.已知直线l:y=kx+1,圆C:(x-1)2+(y+1)2=12.(1)试证明:不论k为何实数,直线l和圆C总有两个交点;(2)求直线l被圆C截得的最短弦长.法一(1)证明由y=kx+1,(x-1)2+(y+1)2=12,消去y得(k2+1)x2-(2-4k)x-7=0,因为Δ=(2-4k)2+28(k2+1)0,所以不论k为何实数,直线l和圆C总有两个交点.(2)解设直线与圆交于A(x1,y1),B(x2,y2)两点,则直线l被圆C截得的弦长|AB|=1+k2|x1-x2|=28-4k+11k21+k2=211-4k+31+k2,令t=4k+31+k2,则tk2-4k+(t-3)=0,当t=0时,k=-34,当t≠0时,因为k∈R,所以Δ=16-4t(t-3)≥0,解得-1≤t≤4,且t≠0,故t=4k+31+k2的最大值为4,此时|AB|最小为27.法二(1)证明因为不论k为何实数,直线l总过点P(0,1),而|PC|=523=R,所以点P(0,1)在圆C的内部,即不论k为何实数,直线l总经过圆C内部的定点P.所以不论k为何实数,直线l和圆C总有两个交点.(2)解由平面几何知识知过圆内定点P(0,1)的弦,只有与PC(C为圆心)垂直时才最短,而此时点P(0,1)为弦AB的中点,由勾股定理,知|AB|=212-5=27,即直线l被圆C截得的最短弦长为27.11.(2017·衡水中学月考)两圆x2+y2+2ax+a2-4=0和x2+y2-4by-1+4b2=0恰有三条公切线,若a∈R,b∈R且ab≠0,则1a2+1b2的最小值为()A.1B.3C.19D.49解析x2+y2+2ax+a2-4=0,即(x+a)2+y2=4,x2+y2-4by-1+4b2=0,即x2+(y-2b)2=1.依题意可得,两圆外切,则两圆圆心距离等于两圆的半径之和,则a2+(2b)2=1+2=3,即a2+4b2=9,所以1a2+1b2=1a2+1b2a2+4b29=195+a2b2+4b2a2≥195+2a2b2·4b2a2=1,当且仅当a2b2=4b2a2,即a=±2b时取等号.答案A12.(2015·山东卷)一条光线从点(-2,-3)射出,经y轴反射后与圆(x+3)2+(y-2)2=1相切,则反射光线所在直线的斜率为()A.-53或-35B.-32或-23C.-54或-45D.-43或-34解析由已知,得点(-2,-3)关于y轴的对称点为(2,-3),由入射光线与反射光线的对称性,知反射光线一定过点(2,-3).设反射光线所在直线的斜率为k,则反射光线所在直线的方程为y+3=k(x-2),即kx-y-2k-3=0.由反射光线与圆相切,则有d=|-3k-2-2k-3|k2+1=1,解得k=-43或k=-34,故选D.答案D13.已知曲线C:x=-4-y2,直线l:x=6,若对于点A(m,0),存在C上的点P和l上的点Q使得AP→+AQ→=0,则m的取值范围为________.解析曲线C:x=-4-y2,是以原点为圆心,2为半径的半圆,并且xP∈[-2,0],对于点A(m,0),存在C上的点P和l上的点Q使得AP→+AQ→=0,说明A是PQ的中点,Q的横坐标x=6,∴m=6+xP2∈[2,3].答案[2,3]14.(2017·湖南省东部六校联考)已知直线l:4x+3y+10=0,半径为2的圆C与l相切,圆心C在x轴上且在直线l的右上方.(1)求圆C的方程;(2)过点M(1,0)的直线与圆C交于A,B两点(A在x轴上方),问在x轴正半轴上是否存在定点N,使得x轴平分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.解(1)设圆心C(a,0)a>-52,则|4a+10|5=2⇒a=0或a=-5(舍).所以圆C的方程为x2+y2=4.(2)当直线AB⊥x轴时,x轴平分∠ANB.当直线AB的斜率存在时,设直线AB的方程为y=k(x-1),N(t,0),A(x1,y1),B(x2,y2),由x2+y2=4,y=k(x-1),得(k2+1)x2-2k2x+k2-4=0,所以x1+x2=2k2k2+1,x1x2=k2-4k2+1.若x轴平分∠ANB,则kAN=-kBN⇒y1x1-t+y2x2-t=0⇒k(x1-1)x1-t+k(x2-1)x2-t=0⇒2x1x2-(t+1)(x1+x2)+2t=0⇒2(k2-4)k2+1-2k2(t+1)k2+1+2t=0⇒t=4,所以当点N为(4,0)时,能使得∠ANM=∠BNM总成立.