第1讲导数的概念及运算一、选择题1.设曲线y=eax-ln(x+1)在x=0处的切线方程为2x-y+1=0,则a=()A.0B.1C.2D.3解析∵y=eax-ln(x+1),∴y′=aeax-1x+1,∴当x=0时,y′=a-1.∵曲线y=eax-ln(x+1)在x=0处的切线方程为2x-y+1=0,∴a-1=2,即a=3.故选D.答案D2.若f(x)=2xf′(1)+x2,则f′(0)等于()A.2B.0C.-2D.-4解析∵f′(x)=2f′(1)+2x,∴令x=1,得f′(1)=-2,∴f′(0)=2f′(1)=-4.答案D3.(2017·西安质测)曲线f(x)=x3-x+3在点P处的切线平行于直线y=2x-1,则P点的坐标为()A.(1,3)B.(-1,3)C.(1,3)和(-1,3)D.(1,-3)解析f′(x)=3x2-1,令f′(x)=2,则3x2-1=2,解得x=1或x=-1,∴P(1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y=2x-1上,故选C.答案C4.(2017·石家庄调研)已知曲线y=lnx的切线过原点,则此切线的斜率为()A.eB.-eC.1eD.-1e解析y=lnx的定义域为(0,+∞),且y′=1x,设切点为(x0,lnx0),则y′|x=x0=1x0,切线方程为y-lnx0=1x0(x-x0),因为切线过点(0,0),所以-lnx0=-1,解得x0=e,故此切线的斜率为1e.答案C5.(2016·郑州质检)已知y=f(x)是可导函数,如图,直线y=kx+2是曲线y=f(x)在x=3处的切线,令g(x)=xf(x),g′(x)是g(x)的导函数,则g′(3)=()A.-1B.0C.2D.4解析由题图可知曲线y=f(x)在x=3处切线的斜率等于-13,∴f′(3)=-13,∵g(x)=xf(x),∴g′(x)=f(x)+xf′(x),∴g′(3)=f(3)+3f′(3),又由题图可知f(3)=1,所以g′(3)=1+3×-13=0.答案B二、填空题6.(2015·天津卷)已知函数f(x)=axlnx,x∈(0,+∞),其中a为实数,f′(x)为f(x)的导函数,若f′(1)=3,则a的值为________.解析f′(x)=alnx+x·1x=a(1+lnx),由于f′(1)=a(1+ln1)=a,又f′(1)=3,所以a=3.答案37.(2016·全国Ⅲ卷)已知f(x)为偶函数,当x<0时,f(x)=ln(-x)+3x,则曲线y=f(x)在点(1,-3)处的切线方程是________.解析设x>0,则-x<0,f(-x)=lnx-3x,又f(x)为偶函数,f(x)=lnx-3x,f′(x)=1x-3,f′(1)=-2,切线方程为y=-2x-1.答案2x+y+1=08.(2015·陕西卷)设曲线y=ex在点(0,1)处的切线与曲线y=1x(x>0)上点P处的切线垂直,则P的坐标为________.解析y′=ex,曲线y=ex在点(0,1)处的切线的斜率k1=e0=1,设P(m,n),y=1x(x>0)的导数为y′=-1x2(x>0),曲线y=1x(x>0)在点P处的切线斜率k2=-1m2(m>0),因为两切线垂直,所以k1k2=-1,所以m=1,n=1,则点P的坐标为(1,1).答案(1,1)三、解答题9.(2017·长沙调研)已知点M是曲线y=13x3-2x2+3x+1上任意一点,曲线在M处的切线为l,求:(1)斜率最小的切线方程;(2)切线l的倾斜角α的取值范围.解(1)y′=x2-4x+3=(x-2)2-1≥-1,∴当x=2时,y′=-1,y=53,∴斜率最小的切线过点2,53,斜率k=-1,∴切线方程为3x+3y-11=0.(2)由(1)得k≥-1,∴tanα≥-1,又∵α∈[0,π),∴α∈0,π2∪3π4,π.故α的取值范围为0,π2∪3π4,π.10.已知曲线y=13x3+43.(1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(2,4)的切线方程.解(1)∵P(2,4)在曲线y=13x3+43上,且y′=x2,∴在点P(2,4)处的切线的斜率为y′|x=2=4.∴曲线在点P(2,4)处的切线方程为y-4=4(x-2),即4x-y-4=0.(2)设曲线y=13x3+43与过点P(2,4)的切线相切于点Ax0,13x30+43,则切线的斜率为y′|x=x0=x20.∴切线方程为y-13x30+43=x20(x-x0),即y=x20·x-23x30+43.∵点P(2,4)在切线上,∴4=2x20-23x30+43,即x30-3x20+4=0,∴x30+x20-4x20+4=0,∴x20(x0+1)-4(x0+1)(x0-1)=0,∴(x0+1)(x0-2)2=0,解得x0=-1或x0=2,故所求的切线方程为x-y+2=0或4x-y-4=0.11.已知f1(x)=sinx+cosx,fn+1(x)是fn(x)的导函数,即f2(x)=f1′(x),f3(x)=f′2(x),…,fn+1(x)=fn′(x),n∈N*,则f2017(x)等于()A.-sinx-cosxB.sinx-cosxC.-sinx+cosxD.sinx+cosx解析∵f1(x)=sinx+cosx,∴f2(x)=f1′(x)=cosx-sinx,∴f3(x)=f2′(x)=-sinx-cosx,∴f4(x)=f3′(x)=-cosx+sinx,∴f5(x)=f4′(x)=sinx+cosx,∴fn(x)是以4为周期的函数,∴f2017(x)=f1(x)=sinx+cosx,故选D.答案D12.已知函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处的切线的斜率为()A.4B.-14C.2D.-12解析f′(x)=g′(x)+2x.∵y=g(x)在点(1,g(1))处的切线方程为y=2x+1,∴g′(1)=2,∴f′(1)=g′(1)+2×1=2+2=4,∴曲线y=f(x)在点(1,f(1))处的切线的斜率为4.答案A13.(2016·全国Ⅱ卷)若直线y=kx+b是曲线y=lnx+2的切线,也是曲线y=ln(x+1)的切线,则b=________.解析y=lnx+2的切线为:y=1x1·x+lnx1+1(设切点横坐标为x1).y=ln(x+1)的切线为:y=1x2+1x+ln(x2+1)-x2x2+1(设切点横坐标为x2).∴1x1=1x2+1,lnx1+1=ln(x2+1)-x2x2+1,解得x1=12,x2=-12,∴b=lnx1+1=1-ln2.答案1-ln214.设函数f(x)=ax-bx,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0.(1)求f(x)的解析式;(2)曲线f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为定值,并求此定值.解(1)方程7x-4y-12=0可化为y=74x-3,当x=2时,y=12.又f′(x)=a+bx2,于是2a-b2=12,a+b4=74,解得a=1,b=3.故f(x)=x-3x.(2)设P(x0,y0)为曲线上任一点,由y′=1+3x2知曲线在点P(x0,y0)处的切线方程为y-y0=1+3x20(x-x0),即y-x0-3x0=1+3x20(x-x0).令x=0,得y=-6x0,从而得切线与直线x=0的交点坐标为0,-6x0.令y=x,得y=x=2x0,从而得切线与直线y=x的交点坐标为(2x0,2x0).所以点P(x0,y0)处的切线与直线x=0,y=x所围成的三角形的面积为S=12-6x0|2x0|=6.故曲线y=f(x)上任一点处的切线与直线x=0,y=x所围成的三角形面积为定值,且此定值为6.