第2讲空间几何体的表面积与体积一、选择题1.(2015·全国Ⅰ卷)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛解析设米堆的底面半径为r尺,则π2r=8,所以r=16π.所以米堆的体积为V=14×13π·r2·5=π12·16π2·5≈3209(立方尺).故堆放的米约有3209÷1.62≈22(斛).答案B2.某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值是()A.2B.92C.32D.3解析由三视图知,该几何体是四棱锥,底面是直角梯形,且S底=12(1+2)×2=3.∴V=13x·3=3,解得x=3.答案D3.(2017·合肥模拟)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+3B.2+3C.1+22D.22解析四面体的直观图如图所示.侧面SAC⊥底面ABC,且△SAC与△ABC均为腰长是2的等腰直角三角形,SA=SC=AB=BC=2,AC=2.设AC的中点为O,连接SO,BO,则SO⊥AC,又SO⊂平面SAC,平面SAC∩平面ABC=AC,∴SO⊥平面ABC,又BO⊂平面ABC,∴SO⊥BO.又OS=OB=1,∴SB=2,故△SAB与△SBC均是边长为2的正三角形,故该四面体的表面积为2×12×2×2+2×34×(2)2=2+3.答案B4.(2015·全国Ⅱ卷)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点.若三棱锥O-ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π解析因为△AOB的面积为定值,所以当OC垂直于平面AOB时,三棱锥O-ABC的体积取得最大值.由13×12R2×R=36,得R=6.从而球O的表面积S=4πR2=144π.答案C5.(2017·青岛模拟)如图,四棱锥P-ABCD的底面ABCD为平行四边形,NB=2PN,则三棱锥N-PAC与三棱锥D-PAC的体积比为()A.1∶2B.1∶8C.1∶6D.1∶3解析设点P,N在平面ABCD内的投影分别为点P′,N′,则PP′⊥平面ABCD,NN′⊥平面ABCD,所以PP′∥NN′,则在△BPP′中,由BN=2PN得NN′PP′=23.V三棱锥N-PAC=V三棱锥P-ABC-V三棱锥N-ABC=13S△ABC·PP′-13S△ABC·NN′=13S△ABC·(PP′-NN′)=13S△ABC·13PP′=19S△ABC·PP′,V三棱锥D-PAC=V三棱锥P-ACD=13S△ACD·PP′,又∵四边形ABCD是平行四边形,∴S△ABC=S△ACD,∴V三棱锥N-PACV三棱锥D-PAC=13.故选D.答案D二、填空题6.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.解析设新的底面半径为r,由题意得13πr2·4+πr2·8=13π×52×4+π×22×8,解得r=7.答案77.已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为________.解析依题意可知正四棱柱体对角线的长度等于球的直径,可设球半径为R,则2R=12+12+(2)2=2,解得R=1,所以V=4π3R3=4π3.答案43π8.(2017·郑州质检)某几何体的三视图如图所示,则该几何体的体积为________.解析由三视图可知,该几何体是一个底面半径为1,高为2的圆柱和底面半径为1,高为1的半圆锥拼成的组合体.∴体积V=π×12×2+12×13π×12×1=136π.答案136π三、解答题9.已知一个几何体的三视图如图所示.(1)求此几何体的表面积;(2)如果点P,Q在正视图中所示位置,P为所在线段中点,Q为顶点,求在几何体表面上,从P点到Q点的最短路径的长.解(1)由三视图知该几何体是由一个圆锥与一个圆柱组成的组合体,其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和.S圆锥侧=12(2πa)·(2a)=2πa2,S圆柱侧=(2πa)·(2a)=4πa2,S圆柱底=πa2,所以S表=2πa2+4πa2+πa2=(2+5)πa2.(2)沿P点与Q点所在母线剪开圆柱侧面,如图.则PQ=AP2+AQ2=a2+(πa)2=a1+π2,所以从P点到Q点在侧面上的最短路径的长为a1+π2.10.(2015·全国Ⅱ卷)如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两部分体积的比值.解(1)交线围成的正方形EHGF如图所示.(2)如图,作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为四边形EHGF为正方形,所以EH=EF=BC=10.于是MH=EH2-EM2=6,AH=10,HB=6.故S四边形A1EHA=12×(4+10)×8=56,S四边形EB1BH=12×(12+6)×8=72.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为9779也正确.11.若某一几何体的正视图与侧视图均为边长是1的正方形,且其体积为12,则该几何体的俯视图可以是()解析若俯视图为A,则该几何体为正方体,其体积为1,不满足条件.若俯视图为B,则该几何体为圆柱,其体积为π122×1=π4,不满足条件.若俯视图为C,则该几何体为三棱柱,其体积为12×1×1×1=12,满足条件.若俯视图为D,则该几何体为圆柱的14,体积为14π×1=π4,不满足条件.答案C12.(2015·全国Ⅰ卷)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1B.2C.4D.8解析该几何体是一个半球与一个半圆柱的组合体,球的半径为r,圆柱的底面半径为r,高为2r,如图.则表面积S=12×4πr2+πr2+(2r)2+πr·2r=(5π+4)r2,又S=16+20π,∴(5π+4)r2=16+20π,解得r=2.答案B13.圆锥被一个平面截去一部分,剩余部分再被另一个平面截去一部分后,与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示,若r=1,则该几何体的体积为________.解析根据三视图中的正视图和俯视图知,该几何体是由一个半径r=1的半球,一个底面半径r=1、高2r=2的14圆锥组成的,则其体积为V=43πr3×12+13πr2×2r×14=5π6.答案5π614.四面体ABCD及其三视图如图所示,平行于棱AD,BC的平面分别交四面体的棱AB,BD,DC,CA于点E,F,G,H.(1)求四面体ABCD的体积;(2)证明:四边形EFGH是矩形.(1)解由该四面体的三视图可知,BD⊥DC,BD⊥AD,AD⊥DC,BD=DC=2,AD=1,又BD∩DC=D,∴AD⊥平面BDC,∴四面体ABCD的体积V=13×12×2×2×1=23.(2)证明∵BC∥平面EFGH,平面EFGH∩平面BDC=FG,平面EFGH∩平面ABC=EH,∴BC∥FG,BC∥EH,∴FG∥EH.同理,EF∥AD,HG∥AD,∴EF∥HG,∴四边形EFGH是平行四边形.又∵AD⊥平面BDC,BC⊂平面BDC,∴AD⊥BC,∴EF⊥FG,∴四边形EFGH是矩形.