微重点8数列的递推关系数列的递推关系是高考重点考查内容,作为两类特殊数列——等差数列、等比数列,可直接根据它们的通项公式求解,但也有一些数列要通过构造转化为等差数列或等比数列,再利用公式求解,体现化归思想在数列中的应用.考点一构造辅助数列例1(1)已知数列{an}满足a1=1,an-3an+1=2anan+1(n∈N*),则下列结论不正确的是()A.1an+1为等比数列B.{an}的通项公式为an=12×3n-1-1C.{an}为递增数列D.1an的前n项和Tn=3n-n-1(2)(2022·吕梁模拟)已知Sn为数列{an}的前n项和,且a1=1,an+1+an=3×2n,则S100等于()A.2100-3B.2100-2C.2101-3D.2101-2规律方法(1)若数列{an}满足an+1=pan+q(p≠0,1,q≠0),构造an+1+λ=p(an+λ).(2)若数列{an}满足an+1=pan+f(n)(p≠0,1),构造an+1+g(n+1)=p[an+g(n)].跟踪演练1(1)在数列{an}中,a1=3,an=2an-1-n+2(n≥2,n∈N*),若an980,则n的最小值是()A.8B.9C.10D.11(2)(2022·兰州模拟)若数列{an}满足nan+1=(n+1)an+1(n∈N*),且a1=1,则a2023等于()A.4045B.4044C.2023D.2022考点二利用an与Sn的关系例2已知Sn是数列{an}的前n项和,a1=3,且当n≥2时,Sn,nan2,Sn-1成等差数列.(1)求数列{an}的通项公式;(2)设数列{bn}满足bn=1-9a2n,若b2·b3·…·bn=89176,求正整数n的值.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________跟踪演练2(1)(2022·焦作模拟)已知数列{an}满足a1+12a2+122a3+…+12n-1an=2n,则a1+2a2+22a3+…+22021a2022等于()A.2(22022-1)B.23(22022+1)C.23(24044-1)D.23(24044+1)(2)(2022·济宁模拟)已知正项数列{an}的前n项和为Sn,若2anSn=1+a2n,bn=log2Sn+2Sn,数列{bn}的前n项和为Tn,则满足Tn≥3的n的最小正整数的值为______.