微重点8数列的递推关系1.(2022·哈尔滨模拟)已知数列{an}的首项为10,且2an+1+an=3,则满足不等式|an-1|1125的n的最小正整数的值为()A.9B.10C.11D.122.已知数列{an}满足nan+1=(n+1)an+2(n∈N*),且a1=1,则a2023等于()A.6065B.6067C.4044D.40433.(2022·焦作模拟)已知数列{an}的前n项和Sn=(-1)nan+12n(n∈N*),则S100等于()A.-12100B.0C.12100D.121014.(2022·衡阳模拟)已知数列{an}满足a1=1311,2an+1-anan+1=1,则下列结论错误的是()A.a2=119B.数列1an-1为等差数列C.an的最小值为13D.an的最大值为35.(2022·洛阳模拟)若数列{an}和{bn}满足a1=2,b1=0,2an+1=3an+bn+2,2bn+1=an+3bn-2,则a2023+b2023=________.6.(2022·河南省重点高中联考)已知数列{an}中,a1=14,an-2an+1an+2an+1=1n+1,则满足an11000的n的最大值为________.7.(2022·邯郸模拟)已知数列{an}满足a1a1-1+a2a2-1+a3a3-1+…+anan-1=2an-1.(1)证明:数列1-anan为等比数列;(2)已知bn=an(an+1-1),求数列{bn}的前n项和Sn.