第04讲数列求和一、单选题1.在数列na中,12111nnannnnN,11nnnbaa,则数列nb的前n项和nS()A.41nnB.21nnC.21nnD.21nn【答案】A【分析】由等差数列求和公式可整理得到na,进而可得nb,采用裂项相消法可求得nS.【详解】112121111212nnnnnnannnnn,11411411nnnbaannnn,11111144141223111nnSnnnn.故选:A.2.已知函数12fx为奇函数,且1gxfx,若2023nnag,则数列na的前2022项和为()A.2023B.2022C.2021D.2020【答案】B【分析】由12fx为奇函数,可得10fxfx,再由1gxfx,得12gxgx,然后利用倒序相加法可求得结果.【详解】由于函数12fx为奇函数,则1122fxfx,即11022fxfx,所以10fxfx,所以11112gxgxfxfx,所以12202212202222202320232023aaaggg12022220212022122022202320232023202320232023gggggg因此数列na的前2022项和为1220222022aaa.故选:B.3.如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为1.1xy,第n根弦(Nn,从左数第1根弦在y轴上,称为第0根弦)分别与雁柱曲线和直线:1lyx交于点nA(nx,ny)和nB(nx,ny),则200nnnyy()参考数据:取221.18.14.A.814B.900C.914D.1000【答案】C【分析】求出nnyy、,用错位相减法求和即可.【详解】由条件可得20200119200011.111.121.1201.1211.1nnnnnyyn①,所以2012202101.111.121.1201.1211.1nnnyy②,-②得:212001202121011.10.11.11.11.1211.1211.111.1nnnyy,21212211.10.1211.111.118.1491.40.10.10.1,所以200914nnnyy.故选:C.4.已知数列na满足2212352222nnnnaaa,数列na的前n项和为nS,则下列结论错误的是()A.1a的值为2B.数列na的通项公式为312nnanC.数列na为递减数列D.3772nnnS【答案】B【分析】利用na与nS的关系可求数列的通项公式,利用1nnaa可判断单调性,利用错位相减法求nS.【详解】当1n时,124a,∴12a,故A正确;当2n时,22112131512222nnnnaaa,∴2231513523122nnnnnnan,∴312nnna,∵上式对1n也成立,∴312nnna(Nn),故B错误;∵1111343134623202222nnnnnnnnnnnaa,∴数列na为递减数列,故C正确;∵234710312222nnnS,∴2341147103122222nnnS,两式相减得,23111111131113173123232222222222nnnnnnnnnS,∴3772nnnS,故D正确.故选:B.5.已知数列na满足1nnan,则3202120222122222320212022aaaaa()A.20212022B.20192020C.20202021D.20222023【答案】D【分析】由2111nannn利用裂项相消求和可得答案.【详解】因为1nnan,所以211111nannnnn,所以320212022212222111111232021202222334aaaaa1111120221202120222022202320232023.故选:D.6.已知数列na满足11a,1112nnnnaaaann,则na()A.322nnB.223nnC.2231nnD.3122nn【答案】C【分析】由111112nnnnaaaann再利用裂项相消求和可得答案.【详解】因为1112nnnnaaaann,所以111111212nnnnaaaannnn,即1111112nnaann,则11221111111111+nnnnnaaaaaaaa1111111113112112312122nnnnnnnn.所以22231nnann当1n时,122131a上式成立,故2231nnan.故选:C.7.已知数列na是递增的等差数列,3a是1a与11a的等比中项,且25a.若1nnnbaa,则数列nb的前n项和nS()A.322nB.352nC.325nD.355n【答案】A【分析】因为na是递增的等差数列,所以先假设0d,接着利用题意得到1ad,的方程组,解出1ad,的值,就可以得到na的通项公式,然后代入nb,进而求出nb的前n项和nS【详解】因为数列na是递增的等差数列,所以数列na的公差0d.由题意得2231115=aaaa即121115210adadaad解得12,3ad或15,0ad(舍去).所以23131nann.所以13231nnnbaann.所以12352853231322nnSbbbbnnn故选:A.二、填空题8.已知数列na的通项公式(1),nnannS为数列1na的前n项和,则2022S___________.【答案】20222023【分析】根据裂项求和即可求解.【详解】由题知:1111=(1)1nannnn,所以20221111111120221=1=223342022202320232023S,故答案为:202220239.数列22nn的前n项和nS___________.【答案】1222nnn【分析】利用分组求和法,结合等差数列、等比数列前n项和公式求解作答.【详解】依题意,122122222122nnnnnSnn.故答案为:1222nnn10.数列{}na满足12(1)31nnnaan,前16项和为540,则2a__.【答案】-2【分析】分n为奇数与偶数两种情况,分别求得前16项中奇数项和偶数项的和,再根据偶数项与2a的关系求解即可【详解】因为数列{}na满足12(1)31nnnaan,当n为奇数时,231nnaan,所以312aa,7514aa,11926aa,151338aa,则1357911131580aaaaaaaa,当n为偶数时,231nnaan,所以425aa,6411aa,8617aa,10823aa,121029aa,141235aa,161441aa,故425aa,6216aa,8233aa,10256aa,12285aa,142120aa,162161aa,因为前16项和为540,所以24681012141654080460aaaaaaaa,所以28476460a,解得22a.故答案为:2.三、解答题11.已知数列na满足213,21nnaaa,设1nnba.(1)证明:nb是等比数列;(2)求13521naaaa.【答案】(1)证明见解析(2)232353nn【分析】(1)先求出1a,对121nnaa两边同时加1,化简可得结论,(2)由(1)可得21nna,然后利用分组求和可求得结果.(1)证明:当1n时,2121aa,则11a从而由1121nnaa,得1121nnaa,又12b,所以nb是以2为首项,2为公比的等比数列.(2)由(1)得21nna,所以321135212221nnaaaan1232142351.143nnnn12.已知单调递减的正项数列na,2n时满足22111111210nnnnnnnnnaaaaaaaaa.112naS,为na前n项和.(1)求na的通项公式;(2)证明:111nSn.【答案】(1)11nan(2)证明见解析【分析】(1)通过分组分解法化简已知条件,然后构造等差数列1na,求得1na的通项公式,进而求得na的通项公式.(2)结合分析法、裂项求和法证得不等式成立.(1)由22111111210nnnnnnnnnaaaaaaaaa,得2221111()20nnnnnnnnaaaaaaaa,即111120nnnnnnnnaaaaaaaa,由na是单调递减的正项数列,得1120nnnnaaaa,则110nnnnaaaa,即1111nnaa,故1na是以112a为首项,1为公差的等差数列,则11nna,即11nan.(2)要证:111nSn,只需证:11111nannn,即证:21112(1)11nnnnn,即证:221111(1)1nnnnn,即证:222221(1)1nnnnnn,即证:3224(1)(221)nnnn,即证:324410nn,而此不等式显然成立,所以111nSn成立.13.已知数列na的前n项和为nS,点,nnS在曲线220xxy上.(1)证明:数列na为等差数列;(2)设21nnannba,求数列nb的前2n项和.【答案】(1)证明见解析(2)2122nn【