第2节命题及其关系、充分条件与必要条件考试要求1.理解命题的概念,了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系;2.理解充分条件、必要条件与充要条件的含义.1.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性.②两个命题为互逆命题或互否命题时,它们的真假性没有关系.3.充分条件、必要条件与充要条件的概念若p⇒q,则p是q的充分条件,q是p的必要条件p是q的充分不必要条件p⇒q且qpp是q的必要不充分条件pq且q⇒pp是q的充要条件p⇔qp是q的既不充分也不必要条件pq且qp1.否命题与命题的否定:否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论.2.区别A是B的充分不必要条件(A⇒B且BA),与A的充分不必要条件是B(B⇒A且AB)两者的不同.3.充要关系与集合的子集之间的关系,设A={x|p(x)},B={x|q(x)},(1)若A⊆B,则p是q的充分条件,q是p的必要条件.(2)若AB,则p是q的充分不必要条件,q是p的必要不充分条件.(3)若A=B,则p是q的充要条件.4.p是q的充分不必要条件,等价于綈q是綈p的充分不必要条件.1.思考辨析(在括号内打“√”或“×”)(1)“x2+2x-30”是命题.()(2)当q是p的必要条件时,p是q的充分条件.()(3)“若p不成立,则q不成立”等价于“若q成立,则p成立”.()(4)若原命题为真,则这个命题的否命题、逆命题、逆否命题中至少有一个为真.()答案(1)×(2)√(3)√(4)√解析(1)错误.该语句不能判断真假,故该说法是错误的.2.(2021·浙江卷)已知非零向量a,b,c,则“a·c=b·c”是“a=b”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案B解析由a·c=b·c可得(a-b)·c=0,所以(a-b)⊥c或a=b,所以“a·c=b·c”是“a=b”的必要不充分条件.3.(2021·全国甲卷)等比数列{an}的公比为q,前n项和为Sn.设甲:q>0,乙:{Sn}是递增数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件答案B解析当a1<0,q>1时,an=a1qn-1<0,此时数列{Sn}递减,所以甲不是乙的充分条件.当数列{Sn}递增时,有Sn+1-Sn=an+1=a1qn>0,若a1>0,则qn>0(n∈N*),即q>0;若a1<0,则qn<0(n∈N*),不存在,所以甲是乙的必要条件.综上,甲是乙的必要条件但不是充分条件.4.(易错题)命题“若a2+b2=0,则a=0且b=0”的逆否命题是________________.答案若a≠0或b≠0,则a2+b2≠05.(易错题)若“x2-x-60”是“xa”的必要不充分条件,则a的最小值为________.答案3解析由x2-x-60,解得x-2或x3.因为“x2-x-60”是“xa”的必要不充分条件,所以{x|xa}是{x|x-2或x3}的真子集,即a≥3,故a的最小值为3.6.已知命题“若x≥0,y≥0,则xy≥0”,则原命题、逆命题、否命题、逆否命题这四个命题中,真命题的个数为________.答案2解析由x≥0,y≥0⇒xy≥0,∴原命题成立,则逆否命题也成立.由xy≥0x≥0,y≥0,如x=-1,y=-2,∴原命题的逆命题不成立,则原命题的否命题也不成立.考点一命题及其关系1.已知命题“若函数f(x)=ex-mx在(0,+∞)上是增函数,则m≤1”,则下列说法正确的是()A.否命题是“若函数f(x)=ex-mx在(0,+∞)上是减函数,则m1”B.逆命题是“若m≤1,则函数f(x)=ex-mx在(0,+∞)上是增函数”C.逆否命题是“若m1,则函数f(x)=ex-mx在(0,+∞)上是减函数”D.逆否命题是“若m≤1,则函数f(x)=ex-mx在(0,+∞)上不是增函数”答案B解析由四种命题关系易知B正确.2.给出以下命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③若ab是正整数,则a,b都是正整数;④若f(x)单调递增,g(x)单调递减,则f(x)-g(x)单调递减.其中为真命题的是________(写出所有真命题的序号).答案①解析①命题“若x+y=0,则x,y互为相反数”的逆命题为“若x,y互为相反数,则x+y=0”,显然①为真命题;②的否命题为“不全等三角形的面积不相等”,但不全等的三角形的面积也可能相等,故②为假命题;③若ab是正整数,则a,b不一定都是正整数,例如a=-1,b=-3,故③为假命题;④构造函数f(x)=x,g(x)=-x,则f(x)-g(x)=2x,显然f(x)-g(x)单调递增,故④为假命题.综上①为真命题.3.能说明“若f(x)f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是________________.答案f(x)=sinx,x∈[0,2](答案不唯一,再如f(x)=0,x=0,1x,0x≤2)解析根据函数单调性的概念,只要找到一个定义域为[0,2]的不单调函数,满足在定义域内有唯一的最小值点,且f(x)min=f(0).感悟提升1.写一个命题的其他三种命题时,需注意:(1)对于不是“若p,则q”形式的命题,需先改写;(2)若命题有大前提,写其他三种命题时需保留大前提.2.判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.3.根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易时,可间接判断.考点二充分条件与必要条件的判定例1(1)(2020·浙江卷)已知空间中不过同一点的三条直线l,m,n.“l,m,n共面”是“l,m,n两两相交”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件(2)(2020·北京卷)已知α,β∈R,则“存在k∈Z使得α=kπ+(-1)kβ”是“sinα=sinβ”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案(1)B(2)C解析(1)由m,n,l在同一平面内,可能有m,n,l两两平行,所以m,n,l可能没有公共点,所以不能推出m,n,l两两相交.由m,n,l两两相交且m,n,l不经过同一点,可设l∩m=A,l∩n=B,m∩n=C,且A∉n,所以点A和直线n确定平面α,而B,C∈n,所以B,C∈α,所以l,m⊂α,所以m,n,l在同一平面内.故选B.(2)若存在k∈Z使得α=kπ+(-1)kβ,则当k=2n(n∈Z),α=2nπ+β,有sinα=sin(2nπ+β)=sinβ;当k=2n+1(n∈Z),α=(2n+1)π-β,有sinα=sin[(2n+1)π-β]=sinβ.若sinα=sinβ,则α=2kπ+β或α=2kπ+π-β(k∈Z),即α=kπ+(-1)kβ(k∈Z).故选C.感悟提升充要条件的三种判断方法(1)定义法:根据p⇒q,q⇒p进行判断.(2)集合法:根据使p,q成立的对象的集合之间的包含关系进行判断.(3)等价转化法:根据一个命题与其逆否命题的等价性,把要判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题.训练1(1)(2022·长春质检)已知m,n是平面α内两条不同的直线,则“直线l⊥m且l⊥n”是“l⊥α”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)“a2,b2”是“a+b4,ab4”成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案(1)B(2)A解析(1)若m与n不相交,则由“直线l⊥m且l⊥n”不能推出“l⊥α”,若l⊥α,则l垂直于面内任何一条直线,故选B.(2)若a2,b2,则a+b4,ab4成立.当a=1,b=5时,满足a+b4,ab4,但不满足a2,b2,∴a+b4,ab4a2,b2,故答案为A.考点三充分、必要条件的应用例2(经典母题)已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m}.若x∈P是x∈S的必要条件,求实数m的取值范围.解由x2-8x-20≤0,得-2≤x≤10,∴P={x|-2≤x≤10}.∵x∈P是x∈S的必要条件,则S⊆P.∴1-m≥-2,1+m≤10,解得m≤3.又∵S为非空集合,∴1-m≤1+m,解得m≥0.综上,m的取值范围是[0,3].迁移设p:P={x|x2-8x-20≤0},q:非空集合S={x|1-m≤x≤1+m},且綈p是綈q的必要不充分条件,求实数m的取值范围.解由例题知P={x|-2≤x≤10}.∵綈p是綈q的必要不充分条件,p是q的充分不必要条件.∴p⇒q且qp,即PS.∴1-m≤-2,1+m10或1-m-2,1+m≥10,∴m≥9,又因为S为非空集合,所以1-m≤1+m,解得m≥0,综上,实数m的取值范围是[9,+∞).感悟提升1.根据充分、必要条件求解参数取值范围需抓住“两”关键(1)把充分、必要条件转化为集合之间的关系.(2)根据集合之间的关系列出关于参数的不等式(组)求解.2.解题时要注意区间端点值的检验.尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.训练2(1)使2x≥1成立的一个充分不必要条件是()A.1x3B.0x2C.x2D.0x≤2(2)若关于x的不等式|x-1|a成立的充分不必要条件是0x4,则实数a的取值范围是________.答案(1)B(2)[3,+∞)解析(1)由2x≥1得0x≤2,依题意由选项组成的集合是(0,2]的真子集,故选B.(2)|x-1|a⇒1-ax1+a,因为不等式|x-1|a成立的充分不必要条件是0x4,所以(0,4)(1-a,1+a),所以1-a≤0,1+a4或1-a0,1+a≥4,解得a≥3.1.设a∈R,则“a>1”是“a2>a”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析由a2>a,得a2-a>0,解得a>1或a<0,∴“a>1”是“a2>a”的充分不必要条件.2.(2021·全国百校联考)已知命题p:“任意a0,且a≠1,函数y=1+loga(x-1)的图象过点P”的逆否命题为真,则P点坐标为()A.(2,1)B.(1,1)C.(1,2)D.(2,2)答案A解析由逆否命题与原命题同真同假,可知命题p为真命题,由对数函数性质可知,函数y=1+loga(x-1)的图象过定点(2,1),所以点P的坐标为(2,1).3.已知命题p:若a1,则a21,下列说法正确的是()A.命题p是真命题B.命题p的逆命题是真命题C.命题p的否命题是“若a1,则a2≥1”D.命题p的逆否命题是“若a2≥1,则a1”答案B解析p:若a1,则a21;如a=-2,则(-2)21,∴p为假命题,A不正确;命题p的逆命题:若a21,则a1为真命题,B正确;命题p的否命题:若a≥1,则a2≥1,C显然不正确;命题p的逆否命题:若a2≥1,则a≥1,D显然不正确.4.王昌龄的《从军行》中的两句诗为“黄沙百战穿金甲,不破楼兰终不还”,从中可知“攻破楼兰”是“返回家乡”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案B解析“攻破楼兰”不一定“返回家乡”,但“返回家乡”一定“攻破楼兰”,故选B.5.命题若“x2+y2=0