实用标准精彩文档第一讲二元一次方程组【知识点一:二元一次方程的定义】定义:方程有两个未知数,并且未知数的次数都是1,像这样的方程,我们把它叫做二元一次方程。把这两个二元一次方程合在一起,就组成了一个二元一次方程组。例1下列方程组中,不是二元一次方程组的是()。A、B、C、D、【巩固练习】1、已知下列方程组:(1)32xyy,(2)324xyyz,(3)1310xyxy,(4)30xyxy,其中属于二元一次方程组的个数为()A.1B.2C.3D.42、若753313mnmyx是关于x、y二元一次方程,则m=_________,n=_________。3、若方程213257mnxy是二元一次方程.求m、n的值【知识点二:二元一次方程组的解定义】对于二元一次方程组这里x=5与y=2既满足方程①也满足方程②,也就是说x5与y2是二元一次方程组的解,并记作52xy一般地,使二元一次方程组中两个方程左右两边的值都相等的两个未知数的值叫做二元一次方程组的解。①②7317xyxy①②7317xyxy实用标准精彩文档例3、方程组422yxyx的解是()A.21yxB.13yxC.20yxD.02yx【巩固练习】1、当1mx,1my满足方程032myx,则m_________.2、下面几个数组中,哪个是方程7x+2y=19的一个解()。A、31xyB、31xyC、31xyD、31xy3、下列方程组中是二元一次方程组的是()A.12xyxyB.52313xyyxC.20135xzxyD.5723zxy【综合练习题】一、选择题:4、下列方程组中,是二元一次方程组的是()A.228423119...23754624xyxyabxBCDxybcyxxy5、若2x23y20-(),则的值是()A.-1B.-2C.-3D.32二、填空题6、若3m3n1x2y5---是二元一次方程,则m_____,n______.7、已知2,3xy是方程xky1-的解,那么k_______.实用标准精彩文档8、已知2x12y10-(),且2xky4-,则k_____.9、写一个以57xy为解的一个二元一次方程是_________.三、解答题10、方程组2528xyxy的解是否满足2xy8-?11、满足2xy8-的一对x,y的值是否是方程组2528xyxy的解?实用标准精彩文档第二讲二元一次方程组的解法方法一:代入消元法【典型例题】例1:用代入消元法解方程组27838100xyxy我们通过代入消去一个未知数,将方程组转化为一个一元一次方程来解,这种解法叫做代入消元法。用代入消元法解二元一次方程组的步骤:(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来.(2)把(1)中所得的方程代入另一个方程,消去一个未知数.(3)解所得到的一元一次方程,求得一个未知数的值.(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.【巩固练习】1、方程x4y15用含y的代数式表示,x是()A.x4y15B.x154yC.x4y15D.x4y152、把方程7x2y15写成用含x的代数式表示y的形式,得()A.x=215152715157...7722xxyxxBxCyDy3、用代入法解方程组252138xyxy较为简便的方法是()A.先把①变形B.先把②变形C.可先把①变形,也可先把②变形D.把①、②同时变形4、将y2x4代入3xy5可得()A.3x2x45B.3x2x45C.3x2x45D.3x2x45实用标准精彩文档5、判断正误:(1)方程3x2y22变形得y13x()(2)方程x3y12x写成含y的代数式表示x的形式是x3y12x()6、把下列方程写成用含x的代数式表示y的形式:①3x5y21②2x3y11;③4x3yxy1④2xy3xy1()()7、用代入消元法解下列方程组(1))5(3)1(55)1(3xyyx(2)382101187xyxy【综合训练】8、已知1331024xaxyyxby是方程组的解,求a、b的值.9、已知方程组43,322,xyxy则xy的值是()A.1B.-1C.0D.2实用标准精彩文档10、已知31xy和211xy都满足axby7,则a,b11、已知二元一次方程组941175yxxy的解为xayb,,则ab()A.1B.11C.13D.16方法二:加减消元法我们知道,对于方程组:20240xyxy分析:这个方程组的两个方程中,y的系数有什么关系?利用这种关系你能发现新的消元方法吗?解:②-①得,2xyxy4022即x18,把x18代入①得y4。所以4yx=18 定义:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加减,就能消去这个未知数,得到一个一元一次方程这种方法叫做加减消元法,简称加减法。例1、方程组231534mnmn中,n的系数的特点是,所以我们只要将两式,就可以消去未知数,化成一个一元一次方程,达到消元的目的.例2、用加减法解341236xyxy时,将方程①两边乘以,把方程②两边乘以,可以比较简便地消去未知数.实用标准精彩文档【方法掌握要诀】用加减法解二元一次方程组时,两个方程中同一个未知数的系数必须相同或互为相反数,即它们的绝对值相等.当未知数的系数的符号相同时,用两式相减;当未知数的系数的符号相反时,用两式相加。①方程组的两个方程中,如果同一个未知数的系数既不互为相反数,又不相等,就用适当的整数乘方程两边,使一个未知数的系数互为相反数或相等;②把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;③解这个一元一次方程;④将求出的未知数的值代入原方程组中的任意一个方程中,求出另一个未知数的值,从而得到方程组的解.【巩固练习】1、用加减法解方程组326231xyxy时,要使方程中同一个未知数的系数相等或互为相反数,必须适当变形,以下四种变形正确的是()966961896186412(1)(2)(3)(4)462462462693xyxyxyxyxyxyxyxyA.(1)(2)B.(2)(3)C.(3)(4)D.(4)(1)2、对于方程组2353433xyxy而言,你能设法让两个方程中x的系数相等吗?你的方法是;若让两个方程中y的系数互为相反数,你的方法是.3、用加减消元法解方程组23537xyxy正确的方法是()A.2x5①②得B.3x12①②得C.3x75①②得D.x3y7x2先将②变为③,再①③得4、在方程组341236xyxy中,若要消x项,则①式乘以得③;②式可乘以得④;然后再③④两式即可.5、方程组356234xyxy,②×3-①×2得()A.3y2B.4y10C.y0D.7y8实用标准精彩文档6、方程组1325yxxy的解是()A.3333...2422xxxxBCDyyyy7、用加减法解下列方程组:(1)383799215(2)(3)274753410xymnxyxymnxy8、用合适的方法解下列方程组:(1)4022356515(2)(3)322242133yxxyxyxyxyxy【提高练习】9、已知方程组22331xykxyk的解x和y的和等于6,k=_______.实用标准精彩文档10、已知232xyaxya,求xy的值.11、如果二元一次方程组1532234axbyxaxbyy的解是,则ab=