专题2-4导数证明不等式归类目录讲高考.........................................................................................................................................1题型全归纳..................................................................................................................................5【题型一】..................................................................................................................................5【题型二】..................................................................................................................................7【题型三】..................................................................................................................................7【题型四】................................................................................................................................13【题型五】................................................................................................................................15【题型七】................................................................................................................................18【题型八】................................................................................................................................20【题型九】................................................................................................................................22【题型十】................................................................................................................................24【题型十一】............................................................................................................................26专题训练...................................................................................................................................34讲高考1.已知函数lnxfxxaxxe.(1)若0fx,求a的取值范围;(2)证明:若fx有两个零点12,xx,则121xx.2022年高考全国甲卷数学(理)真题【答案】(1)(,1]e(2)证明见的解析【分析】(1)由导数确定函数单调性及最值,即可得解;(2)利用分析法,转化要证明条件为1e11e2ln02xxxxxxx,再利用导数即可得证.【详解】(1)[方法一]:常规求导()fx的定义域为(0,),则2111()1xfxexxx1111111xxxeexxxxx令0fx,得1x当(0,1),()0,()xfxfx单调递减当(1,),()0,()xfxfx单调递增()(1)1fxfea,若()0fx,则10ea,即1ae所以a的取值范围为(,1]e[方法二]:同构处理由0fx得:lnln0xxexxa令ln,1txxt,则0tfteta即taet令,1,tgtett,则'10tgte故tgtet在区间1,上是增函数故min11gtge,即1ae所以a的取值范围为(,1]e(2)[方法一]:构造函数由题知,fx一个零点小于1,一个零点大于1,不妨设121xx要证121xx,即证121xx因为121,(0,1)xx,即证121fxfx又因为12fxfx,故只需证221fxfx即证11lnln0,(1,)xxexxxexxxx即证1112ln02xxexexxxx下面证明1x时,1110,ln02xxexexxxx设11(,)xxegxexxx,则11122111111()11xxxxxgxeexeeexxxxxx11111xxxxexeeexxxx设221111,0xxxexxxxeexxxx所以1xe,而1xee所以10xxeex,所以()0gx所以()gx在(1,)单调递增即()(1)0gxg,所以10xxexex令11()ln,12hxxxxx2222211121(1)()10222xxxhxxxxx所以()hx在(1,)单调递减即()(1)0hxh,所以11ln02xxx;综上,1112ln02xxexexxxx,所以121xx.[方法二]:对数平均不等式由题意得:lnxxeefxaxx令1xetx,则lnfttta,1'10ftt所以lngttta在1,上单调递增,故0gt只有1个解又因为lnxxeefxaxx有两个零点12,xx,故1212xxeetxx两边取对数得:1122lnlnxxxx,即12121lnlnxxxx又因为121212*lnlnxxxxxx,故121xx,即121xx下证121212*lnlnxxxxxx因为121211212121222112lnlnlnlnlnxxxxxxxxxxxxxxxxxx不妨设121xtx,则只需证12lnttt构造12ln,1httttt,则22211'110htttt故12lnhtttt在1,上单调递减故10hth,即12lnttt得证【点睛】关键点点睛:本题是极值点偏移问题,关键点是通过分析法,构造函数证明不等式11()ln2hxxxx这个函数经常出现,需要掌握2.已知函数()eeaxxfxx.(1)当1a时,讨论()fx的单调性;(2)当0x时,()1fx,求a的取值范围;(3)设nN,证明:222111ln(1)1122nnn.2022年新高考全国II卷数学真题【答案】(1)fx的减区间为,0,增区间为0,.(2)12a(3)见解析【分析】(1)求出fx,讨论其符号后可得fx的单调性.(2)设ee1axxhxx,求出hx,先讨论12a时题设中的不等式不成立,再就102a结合放缩法讨论hx符号,最后就0a结合放缩法讨论hx的范围后可得参数的取值范围.(3)由(2)可得12lnttt对任意的1t恒成立,从而可得21ln1lnnnnn对任意的*nN恒成立,结合裂项相消法可证题设中的不等式.【详解】(1)当1a时,1exfxx,则exfxx,当0x时,0fx,当0x时,()0fx¢,故fx的减区间为,0,增区间为0,.(2)设ee1axxhxx,则00h,又1eeaxxhxax,设1eeaxxgxax,则22eeaxxgxaax,若12a,则0210ga,因为gx为连续不间断函数,故存在00,x,使得00,xx,总有0gx,故gx在00,x为增函数,故00gxg,故hx在00,x为增函数,故01hxh,与题设矛盾.若102a,则ln11eeeeaxaxaxxxhxax,下证:对任意0x,总有ln1xx成立,证明:设ln1Sxxx,故11011xSxxx,故Sx在0,上为减函数,故00SxS即ln1xx成立.由上述不等式有ln12eeeeee0axaxxaxaxxaxx,故0hx总成立,即hx在0,上为减函数,所以00hxh.当0a时,有eee1100axxaxhxax,所以hx在0,上为减函数,所以00hxh.综上,12a.(3)取12a,则0x,总有12ee10xxx成立,令12ext,则21,e,2lnxttxt,故22ln1ttt即12lnttt对任意的1t恒成立.所以对任意的*nN,有112ln1nnnnnn,整理得到:21ln1lnnnnn,故222111ln2ln1ln3ln2ln1ln1122nnnnln1n,故不等式成立.3.已知函数()eln(1)xfxx.(1)求曲线()yfx在点(0,(0))f处的切线方程;(2)设()()gxfx,讨论函数()gx在[0,)上的单调性;(3)证明:对任意的,(0,)st,有()()()fstfsft.2022年新高考北京数学高考真题【答案】(1)yx(2)()gx在[0,)上单调递增.(3)证明见解析【分析】(1)先求出切点坐标,在由导数求得切线斜率,即得切线方程;(2)