专题4向量综合归类目录讲高考.........................................................................................................................................1题型全归纳..................................................................................................................................4【题型一】向量夹角...................................................................................................................5【题型二】线性运算1:基底型基础...........................................................................................7【题型三】线性运算2:双线交点型...........................................................................................9【题型四】线性运算3:“赵爽弦图”模型..............................................................................13【题型五】向量基底“象限坐标轴”........................................................................................16【题型七】向量最值.................................................................................................................20【题型八】数量积.....................................................................................................................23【题型九】模及其应用..............................................................................................................26【题型十】投影.........................................................................................................................27【答案】-1................................................................................................................................28【题型十一】面积与奔驰定理...................................................................................................29专题训练...................................................................................................................................32讲高考1.(2022·全国·统考高考真题)已知向量,ab满足||1,||3,|2|3abab,则ab()A.2B.1C.1D.2【答案】C【分析】根据给定模长,利用向量的数量积运算求解即可.【详解】解:∵222|2|||44abaabb,又∵||1,||3,|2|3,abab∴91443134abab,∴1ab故选:C.2.(福建·高考真题)已知||1,||3,0OAOBOAOB,点C在AOB内,且30AOC.设()OCmOAnOBmnR、,则mn等于()A.13B.3C.33D.3【答案】B【分析】由题意可得OAOB,建立坐标系,由已知条件可得(,3)OCmn,进而可得33tan303nm,即可得答案.【详解】解:因为||1,||3,0OAOBOAOB,所以OAOB,又因为点C在AOB内,且30AOC,建立如图所示的坐标系:则(1,0)OA,(0,3)OB,又因为()OCmOAnOBmnR、,所以(,3)OCmn,所以33tan303nm,所以3mn.故选:B.3.(山东·高考真题)在直角ABC中CD是斜边AB上的高,则下列等式不成立的是()A.2ACACABB.2CBBABCC.2ABACCDD.22ACABBABCCDAB【答案】C【分析】根据向量模、数量积的运算对选项进行分析,从而确定正确答案.【详解】A选项,2cosACABACABAACACAC,A选项正确.B选项,22cosBABCBCBABBCBCBCCB,B选项正确.C选项,ACCDABBCCDABCDBCCD22cosCDBCBCDCDAB,C选项错误.D选项,根据三角形的面积公式可知:222211,22ABCDACCBABCDACCB,结合AB选项的分析可知:22222ACABBABCACCBCDABAB,D选项正确.故选:C4.(2022·全国·统考高考真题)在ABC中,点D在边AB上,2BDDA.记CAmCDn,,则CB()A.32mnB.23mnC.32mnD.23mn【答案】B【分析】根据几何条件以及平面向量的线性运算即可解出.【详解】因为点D在边AB上,2BDDA,所以2BDDA,即2CDCBCACD,所以CB3232CDCAnm23mn.故选:B.5.(2022·全国·统考高考真题)已知O为坐标原点,过抛物线2:2(0)Cypxp焦点F的直线与C交于A,B两点,其中A在第一象限,点(,0)Mp,若||||AFAM,则()A.直线AB的斜率为26B.||||OBOFC.||4||ABOFD.180OAMOBM【答案】ACD【分析】由AFAM及抛物线方程求得36(,)42ppA,再由斜率公式即可判断A选项;表示出直线AB的方程,联立抛物线求得6(,)33ppB,即可求出OB判断B选项;由抛物线的定义求出2512pAB即可判断C选项;由0OAOB,0MAMB求得AOB,AMB为钝角即可判断D选项.【详解】对于A,易得(,0)2pF,由AFAM可得点A在FM的垂直平分线上,则A点横坐标为3224ppp,代入抛物线可得2233242pypp,则36(,)42ppA,则直线AB的斜率为6226342ppp,A正确;对于B,由斜率为26可得直线AB的方程为1226pxy,联立抛物线方程得22106ypyp,设11(,)Bxy,则16626pyp,则163py,代入抛物线得21623ppx,解得13px,则6(,)33ppB,则22673332ppppOBOF,B错误;对于C,由抛物线定义知:325244312pppABppOF,C正确;对于D,23663663(,)(,)0423343234pppppppppOAOB,则AOB为钝角,又26262665(,)(,)0423343236pppppppppMAMB,则AMB为钝角,又360AOBAMBOAMOBM,则180OAMOBM,D正确.故选:ACD.6.(全国·高考真题)向量ab、满足()(2)4abab,且||2,||4ab,则a与b夹角的余弦值等于___________.【答案】12##0.5【分析】利用向量数量积公式得到22()(2)28168cos4abababab,解出即可.【详解】22()(2)2abababab222||||||||cosabab2222424cos8168cos4解得1cos2.故答案为:12.7.(2022·全国·统考高考真题)设向量a,b的夹角的余弦值为13,且1a,3br,则2abb_________.【答案】11【分析】设a与b的夹角为,依题意可得1cos3,再根据数量积的定义求出ab,最后根据数量积的运算律计算可得.【详解】解:设a与b的夹角为,因为a与b的夹角的余弦值为13,即1cos3,又1a,3br,所以1cos1313abab,所以22222221311abbabbabb.故答案为:11.题型全归纳【题型一】向量夹角【讲题型】例题1.已知平面向量a、b、c满足221cacb,则4ab与2cb所成夹角的最大值是()A.6B.3C.23D.56【答案】A【分析】设2ac与2cb夹角为,4ab与2cb所成夹角为,利用平面向量的数量积可得出cos0,并可得出222cos354cos9cos54cos8161654cos,利用基本不等式可求得cos的最小值,可得出的取值范围,即可得解.【详解】设2ac与2cb夹角为,4ab与2cb所成夹角为,4222abaccb,所以,2224242422cos54cosabaccbaccb,①24222222222abcbaccbcbaccbcb2cos0,②又4242cos4cos0cos0abcbabcbab,③②与③联立可得2224cos2cos4cos2cosabab,④①④联立可得22222coscos116cos259354cos9cos1154cos54cos1654cos8161654cos354cos9328161654cos4,当且仅当1cos2时,取等号,233coscos42,0,,则0,6,故4ab与2cb所成夹角的最大值是6,故选:A.例题2.已知单位向量a,b,c满足322abc,则b与2ac夹角的余弦值为()A.33B.32C.22D.23【答案】A【分析】根据a,b,c为单位向量,变形后平方可得:13ab,223bc,0ac,利用夹角公式求出b与2ac夹角的余弦值.【详解】a,b,c为单位向量.对322abc两边平方,即2226