考点6-4数列前n项和综合应用1.(2021·全国·高三课时练习)已知数列na满足12347324naaanan,则23342122aaaaaa()A.58B.34C.54D.52【答案】C利用32nna的前n项和求出数列32nna的通项公式,可计算出na,然后利用裂项法可求出23342122aaaaaa的值.【详解】12347324naaanan.当1n时,14a;当2n时,由12347324naaanan,可得1231473541naaanan,两式相减,可得324nna,故432nan,因为14a也适合上式,所以432nan.依题意,12161611313433134nnaannnn,故233421221611111111161153477101013616434644aaaaaa.故选:C.2.(2014·全国·高三课时练习(理))设函数()mfxxax的导函数()21fxx,则数列*1N()nfn()的前n项和是()A.+1nnB.+2+1nnC.1nnD.1nn【答案】A【分析】由题意,根据导数,求解,ma的值,得到数列1fn,即可求解数列的和.【详解】由题意,函数mfxxax,则1mfxmxa,又由21fxx,所以2,1ma,即2fxxx,所以2(1)fnnnnn,所以1111(1)1fnnnnn,所以1fn的前n项和为111111(1)()()1223111nnnnn,故选A.3.(2018·全国·高三课时练习)若数列na的通项公式是132nnan,则1210aaa()A.15B.12C.12D.15【答案】A【分析】根据通项公式求出前十项,由此求得前十项的和.【详解】由于132nnan,故1210aaa147101316192225283333315.故选A.4.(2020·江苏·高考真题)设{an}是公差为d的等差数列,{bn}是公比为q的等比数列.已知数列{an+bn}的前n项和221()nnSnnnN,则d+q的值是_______.【答案】4【分析】结合等差数列和等比数列前n项和公式的特点,分别求得,nnab的公差和公比,由此求得dq.【详解】设等差数列na的公差为d,等比数列nb的公比为q,根据题意1q.等差数列na的前n项和公式为2111222nnnddPnadnan,等比数列nb的前n项和公式为1111111nnnbqbbQqqqq,依题意nnnSPQ,即22111212211nnbbddnnnanqqq,通过对比系数可知111212211ddaqbq112021daqb,故4dq.故答案为:45.(2014·全国·高三课时练习(理))在数列na中,112,1nnaaa(n∈N+),设Sn为数列na的前n项和.则S2007-2S2006+S2005=_________.【答案】3【详解】当n为偶数时,a1+a2=a3+a4=…=an-1+an=1,故Sn=2n;当n为奇数时,a1=2,a2+a3=a4+a5=…=an-1+an=1,故Sn=2+12n=32n.故S2007-2S2006+S2005=1005-2×1003+1004=3.6.(2021·全国·高三课时练习)将等比数列nb按顺序分成1项,2项,4项,…,12n项的各组,再将公差为2的等差数列na的各项依次插入各组之间,得到数列nc:1b,1a,2b,3b,2a,4b,5b,6b,7b,3a,…,数列nc的前n项和为nS.若11c,22c,3134S,则100S()A.18611302B.1863113042C.18621113022D.1861113032【答案】D【分析】由已知求得等比数列的首项和公比,以及等差数列的首项,再求得数列nc的前100项中含有数列na的前6项,含有数列nb的前94项,运用分组求和的方法可求得答案.【详解】解:由已知得11b,12a,2331214bcScc,等比数列nb的公比14q.令21122221nnnT,则663T,7127T,所以数列nc的前100项中含有数列na的前6项,含有数列nb的前94项,故1001294126Sbbbaaa941861165114621301222341.故选:D.7.(2021·全国·高三课时练习)已知等差数列na的前n项和为nS,若190S,200S,则11Sa,22Sa,…,2020Sa中最大的是()A.88SaB.99SaC.1100SaD.1111Sa【答案】C【分析】由条件得到此数列为递减数列,进而可以推出1231011120aaaaaa,12100SSS,1011121920210SSSSSS,进而可得出答案.【详解】由119191019()1902aaSa,得到100a;由12020101120()10()02aaSaa,得到110a,∴等差数列na为递减数列,且1231011120aaaaaa,12100SSS,1011121920210SSSSSS,当10n时,0,0nnSa,且10S最大,10a最小,所以1100Sa最大;当1119n时,0,0nnSa,此时0nnSa;当20n时,20200,0Sa,且20100SS,20100aa,所以202010202010SSSaaa,综上所述,11Sa,22Sa,…,2020Sa中最大的是1100Sa.故选:C.8.(2020·全国·高三课时练习(理))设数列na的前n项和为nS,11a,nnSna为常数列,(na)A.113nB.21nnC.112nnD.523n【答案】B【分析】由题意知,2nnSna,当2n时,能得到111nnnana,由此能求出21nann.【详解】数列na的前n项和为nS,且11a,111112Sa,nnSna为常数列,由题意知,2nnSna,当2n时,111nnnana,从而3241231121341nnaaaanaaaan,21nann,当1n时上式成立,21nann.故选B.9.(2014·全国·高三课时练习(理))若数列na是正项数列,且212...32naaannnN,则12...23aa1nan__________.【答案】22610nn【分析】通过已知条件求出数列的通项公式,然后化简所求数列的各项,利用等差数列求出数列的和.【详解】因为数列{an}是正项数列,且12naaan2+3n2,(n∈N*)…①所以121naaa(n﹣1)2+3n﹣3+22n,…②所以①﹣②得,na2n+22n,可得24(1)2nann,则:1nan4(n+1)2n,又16a,故136a所以1218231naaan4[3+4+…(n+1)]141842nn2n2+6n+10.故答案为22610nn10.(2018·全国·高三课时练习(理))已知数列{}na中,45nan,等比数列{}nb的公比q满足1(2)nnqaan,且12ba,则12nbbb__________.【答案】41n【详解】145[415]4nnqaann,124253ba,所以11134nnnbbq,113434nnnb,所以211214334343434114nnnnbbb,故答案为41n.11.(2021·河南·睢县高级中学高三阶段练习(理))设数列na的通项公式为*121cos1N2nnnann,其前n项和为nS,则120S()A.60B.120C.180D.240【答案】D【分析】分别取43nk,42k,41k和4k,*kN,可验证出43424148kkkkaaaa,利用周期性可验算得到结果.【详解】当43nk,*Nk时,cos02n,431ka;当42nk,*Nk时,1os2cn,4224211186kakk;当41nk,*Nk时,cos02n,411ka;当4nk,*Nk时,cos12n,424118kakk.4342414186188kkkkaaaakk,12012082404S.故选:D12.(2022·全国·高三专题练习(理))已知数列{}na满足11a,1(*)1nnnaanNa.记数列{}na的前n项和为nS,则()A.100321SB.10034SC.100942SD.100952S【答案】A【分析】由题意首先整理所给的递推关系式,得到数列的通项的范围,然后利用裂项相消法求和即可确定前100项和的范围.【详解】解:因为111,1nnnaaaa,所以210,2naa,所以1001232Saa,22111111111()()242nnnnnaaaaa,11112nnaa,故121111111,,22nnaaaa,由累加法可得当2n…时,211111114(1)1222(1)nnnnnnanaaa,又因为当1n时,24(1)nan也成立,所以*24()(1)nanNn…,所以1123111nnnnnaanaanan„,113nnanan,故1212112,,,214nnnnaaannanana剟?,由累乘法可得当2n…时,112326116()2154(2)(1)12nnannnaannnnnnn„,所以100111111111116()16()1233445561011023102S„,所以100332S.故选:A.13.(2021·河南·高三阶段练习(理))定义x表示不超过x的最大整数,如0.51,2.32.若数列na的通项公式为2lognanNn,则40951nna()A.121022B.11922C.1022D.78【答案】A【分析】由题可得当122kkn≤Nk时,含有2k个数列na中的项2lognank,又111224095409