§8.5椭圆考试要求1.理解椭圆的定义、几何图形、标准方程.2.掌握椭圆的简单几何性质(范围、对称性、顶点、离心率).3.掌握椭圆的简单应用.知识梳理1.椭圆的定义把平面内与两个定点F1,F2的距离的和等于(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的,两焦点间的距离叫做椭圆的.2.椭圆的简单几何性质焦点的位置焦点在x轴上焦点在y轴上图形标准方程x2a2+y2b2=1(ab0)y2a2+x2b2=1(ab0)范围顶点轴长短轴长为,长轴长为______焦点焦距|F1F2|=____对称性对称轴:________,对称中心:______离心率a,b,c的关系常用结论椭圆的焦点三角形椭圆上的点P(x0,y0)与两焦点构成的△PF1F2叫做焦点三角形.如图所示,设∠F1PF2=θ.(1)当P为短轴端点时,θ最大,12FPFS△最大.(2)12FPFS△=12|PF1||PF2|sinθ=b2tanθ2=c|y0|.(3)|PF1|max=a+c,|PF1|min=a-c.(4)|PF1|·|PF2|≤|PF1|+|PF2|22=a2.(5)4c2=|PF1|2+|PF2|2-2|PF1||PF2|cosθ.(6)焦点三角形的周长为2(a+c).思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.()(2)椭圆是轴对称图形,也是中心对称图形.()(3)y2m2+x2n2=1(m≠n)表示焦点在y轴上的椭圆.()(4)椭圆的离心率e越大,椭圆就越圆.()教材改编题1.椭圆x216+y225=1上点P到上焦点的距离为4,则点P到下焦点的距离为()A.6B.3C.4D.22.已知椭圆C:x2a2+y24=1的一个焦点为(2,0),则C的离心率为()A.13B.12C.22D.2233.若椭圆C:x24+y23=1,则该椭圆上的点到焦点距离的最大值为()A.3B.2+3C.2D.3+1题型一椭圆的定义及其应用例1(1)(2022·丽江模拟)一动圆P与圆A:(x+1)2+y2=1外切,而与圆B:(x-1)2+y2=64内切,那么动圆的圆心P的轨迹是()A.椭圆B.双曲线C.抛物线D.双曲线的一支(2)设点P为椭圆C:x2a2+y24=1(a2)上一点,F1,F2分别为C的左、右焦点,且∠F1PF2=60°,则△PF1F2的面积为________.听课记录:______________________________________________________________________________________________________________________________________延伸探究若将本例(2)中“∠F1PF2=60°”改成“PF1⊥PF2”,求△PF1F2的面积.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________思维升华椭圆定义的应用技巧(1)椭圆定义的应用主要有:求椭圆的标准方程、求焦点三角形的周长、面积及求弦长、最值和离心率等.(2)通常将定义和余弦定理结合使用求解关于焦点三角形的周长和面积问题.跟踪训练1(1)已知△ABC的周长为12,B(0,-2),C(0,2),则顶点A的轨迹方程为()A.x212+y216=1(x≠0)B.x212+y216=1(y≠0)C.x216+y212=1(x≠0)D.x216+y212=1(y≠0)(2)(2023·郑州模拟)若F为椭圆C:x225+y216=1的右焦点,A,B为C上两动点,则△ABF周长的最大值为()A.4B.8C.10D.20题型二椭圆的标准方程命题点1定义法例2(2023·南京模拟)已知椭圆的两个焦点分别为F1(0,2),F2(0,-2),P为椭圆上任意一点,若|F1F2|是|PF1|,|PF2|的等差中项,则此椭圆的标准方程为()A.x264+y260=1B.y264+x260=1C.x216+y212=1D.y216+x212=1听课记录:______________________________________________________________________________________________________________________________________命题点2待定系数法例3已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P1(6,1),P2(-3,-2),则该椭圆的方程为________.听课记录:______________________________________________________________思维升华根据条件求椭圆方程的主要方法(1)定义法:根据题目所给条件确定动点的轨迹满足椭圆的定义.(2)待定系数法:根据题目所给的条件确定椭圆中的a,b.当不知焦点在哪一个坐标轴上时,一般可设所求椭圆的方程为mx2+ny2=1(m0,n0,m≠n),不必考虑焦点位置,用待定系数法求出m,n的值即可.跟踪训练2(1)“1k5”是方程“x2k-1+y25-k=1表示椭圆”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件(2)(2022·南京师大附中模拟)已知过椭圆x2a2+y2b2=1(ab0)的左焦点F1(-1,0)的直线与椭圆交于不同的两点A,B,与y轴交于点C,点C,F1是线段AB的三等分点,则该椭圆的标准方程是()A.x26+y25=1B.x25+y24=1C.x23+y22=1D.x24+y23=1题型三椭圆的几何性质命题点1离心率例4(1)(2022·太原模拟)设F1,F2是椭圆E:x2a2+y2b2=1(ab0)的左、右焦点,过点F1且斜率为33的直线交椭圆于点P,若2∠PF1F2=∠PF2F1,则椭圆E的离心率为()A.3+1B.3-1C.33D.22(2)(2022·全国甲卷)椭圆C:x2a2+y2b2=1(ab0)的左顶点为A,点P,Q均在C上,且关于y轴对称.若直线AP,AQ的斜率之积为14,则C的离心率为()A.32B.22C.12D.13听课记录:______________________________________________________________________________________________________________________________________思维升华求椭圆离心率或其范围的方法(1)直接求出a,c,利用离心率公式e=ca求解.(2)由a与b的关系求离心率,利用变形公式e=1-b2a2求解.(3)构造a,c的方程.可以不求出a,c的具体值,而是得出a与c的关系,从而求得e.命题点2与椭圆有关的范围(最值)问题例5(1)(2023·长沙模拟)已知F1,F2为椭圆x2a2+y2b2=1(a>b>0)的左、右焦点,椭圆的离心率为12,M为椭圆上一动点,则∠F1MF2的最大值为()A.π3B.π2C.2π3D.3π4(2)如图,焦点在x轴上的椭圆x24+y2b2=1(b0)的离心率e=12,F,A分别是椭圆的左焦点和右顶点,P是椭圆上任意一点,则PF→·PA→的最大值为________.听课记录:______________________________________________________________________________________________________________________________________思维升华与椭圆有关的最值或范围问题的求解方法(1)利用数形结合、几何意义,尤其是椭圆的性质.(2)利用函数,尤其是二次函数.(3)利用不等式,尤其是基本不等式.跟踪训练3(1)(2023·镇江模拟)已知椭圆E:x2a2+y2b2=1(ab0)的左、右焦点分别为F1,F2,上顶点为A,射线AF1交椭圆E于点B,以AB为直径的圆过F2,则椭圆E的离心率是()A.22B.33C.12D.55(2)已知椭圆x2a2+y2b2=1(a>b>0)的右焦点为F(c,0),上顶点为A(0,b),直线x=a2c上存在一点P满足(FP→+FA→)·AP→=0,则椭圆的离心率的取值范围为()A.12,1B.22,1C.5-12,1D.0,22