1.(2022·新高考全国Ⅰ改编)如图,直三棱柱ABC-A1B1C1的体积为4,△A1BC的面积为22.(1)求A到平面A1BC的距离;(2)设D为A1C的中点,AA1=AB,平面A1BC⊥平面ABB1A1,求平面ABD与平面BCD夹角的正弦值.2.如图,四棱锥P-ABCD的底面为正方形,PA⊥平面ABCD,M是PC的中点,PA=AB.(1)求证:AM⊥平面PBD;(2)设直线AM与平面PBD交于O,求证:AO=2OM.3.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB∥CD,PA=AB=2CD=2,∠ADC=90°,E,F分别为PB,AB的中点.(1)求证:CE∥平面PAD;(2)求点B到平面PCF的距离.4.(2022·全国乙卷)如图,四面体ABCD中,AD⊥CD,AD=CD,∠ADB=∠BDC,E为AC的中点.(1)证明:平面BED⊥平面ACD;(2)设AB=BD=2,∠ACB=60°,点F在BD上,当△AFC的面积最小时,求CF与平面ABD所成的角的正弦值.5.(2023·青岛模拟)如图①,在梯形ABCD中,AB∥DC,AD=BC=CD=2,AB=4,E为AB的中点,以DE为折痕把△ADE折起,连接AB,AC,得到如图②的几何体,在图②的几何体中解答下列问题.(1)证明:AC⊥DE;(2)请从以下两个条件中选择一个作为已知条件,求平面DAE与平面AEC夹角的余弦值.①四棱锥A-BCDE的体积为2;②直线AC与EB所成角的余弦值为64.6.(2022·连云港模拟)如图,在三棱锥A-BCD中,△ABC是正三角形,平面ABC⊥平面BCD,BD⊥CD,点E,F分别是BC,DC的中点.(1)证明:平面ACD⊥平面AEF;(2)若∠BCD=60°,点G是线段BD上的动点,问:点G运动到何处时,平面AEG与平面ACD的夹角最小.