专题01集合的概念与运算(17种题型2个易错考点)考题考点考向2022新高考1,第1题集合的基本运算交集运算2022新高考2,第1题集合的基本运算交集运算2021新高考1,第1题集合的基本运算交集运算2021新高考2,第2题集合的基本运算交集,补集运算本专题是高考必考内容,难度小,分值5分,重点考察集合的基本运算,,常与不等式结合,考察集合的交、并、补运算,复习时以基础知识为主。一.选择题(共4小题)1.(2022•新高考Ⅰ)若集合M={x|<4},N={x|3x≥1},则M∩N=()A.{x|0≤x<2}B.{x|≤x<2}C.{x|3≤x<16}D.{x|≤x<16}【分析】分别求解不等式化简M与N,再由交集运算得答案.【解答】解:由<4,得0≤x<16,∴M={x|<4}={x|0≤x<16},由3x≥1,得x,∴N={x|3x≥1}={x|x},∴M∩N={x|0≤x<16}∩{x|x}={x|≤x<16}.故选:D.【点评】本题考查交集及其运算,考查不等式的解法,是基础题.2.(2022•新高考Ⅱ)已知集合A={﹣1,1,2,4},B={x||x﹣1|≤1},则A∩B=()A.{﹣1,2}B.{1,2}C.{1,4}D.{﹣1,4}【分析】解不等式求集合B,再根据集合的运算求解即可.【解答】解:|x﹣1|≤1,解得:0≤x≤2,∴集合B={x|0≤x≤2}∴A∩B={1,2}.一、真题多维细目表二、命题规律与备考策略三、2022真题抢先刷,考向提前知故选:B.【点评】本题主要考查集合的基本运算,利用集合的关系是解决本题的关键.3.(2021•新高考Ⅱ)若全集U={1,2,3,4,5,6},集合A={1,3,6},B={2,3,4},则A∩∁UB=()A.{3}B.{1,6}C.{5,6}D.{1,3}【分析】先利用补集的定义求出∁UB,再利用交集的定义求解即可.【解答】解:因为全集U={1,2,3,4,5,6},集合A={1,3,6},B={2,3,4},所以∁UB={1,5,6},故A∩∁UB={1,6}.故选:B.【点评】本题考查了集合的运算,主要考查了集合交集与补集的求解,解题的关键是掌握交集和补集的定义,属于基础题.4.(2021•新高考Ⅰ)设集合A={x|﹣2<x<4},B={2,3,4,5},则A∩B=()A.{2,3,4}B.{3,4}C.{2,3}D.{2}【分析】利用交集定义直接求解.【解答】解:∵集合A={x|﹣2<x<4},B={2,3,4,5},∴A∩B={2,3}.故选:C.【点评】本题考查集合的运算,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.考点一:集合及其关系1.集合的确定性、互异性、无序性集合中元素具有确定性、互异性、无序性三大特征.(1)确定性:集合中的元素是确定的,即任何一个对象都说明它是或者不是某个集合的元素,两种情况必居其一且仅居其一,不会模棱两可,例如“著名科学家”,“与2接近的数”等都不能组成一个集合.(2)互异性:一个给定的集合中,元素互不相同,就是在同一集合中不能出现相同的元素.例如不能写成{1,1,2},应写成{1,2}.(3)无序性:集合中的元素,不分先后,没有如何顺序.例如{1,2,3}与{3,2,1}是相同的集合,也是相四、考点清单等的两个集合.【解题方法点拨】解答判断型题目,注意元素必须满足三个特性;一般利用分类讨论逐一研究,转化为函数与方程的思想,解答问题,结果需要回代验证,元素不许重复.【命题方向】本部分内容属于了解性内容,但是近几年高考中基本考查选择题或填空题,试题多以集合相等,含参数的集合的讨论为主.2.集合间的基本关系(1)集合的相等(1)若集合A与集合B的元素相同,则称集合A等于集合B.(2)对集合A和集合B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,那么集合A等于集合B,记作A=B.就是如果A⊆B,同时B⊆A,那么就说这两个集合相等,记作A=B.(3)对于两个有限数集A=B,则这两个有限数集A、B中的元素全部相同,由此可推出如下性质:①两个集合的元素个数相等;②两个集合的元素之和相等;③两个集合的元素之积相等.由此知,以上叙述实质是一致的,只是表达方式不同而已.上述概念是判断或证明两个集合相等的依据.【解题方法点拨】集合A与集合B相等,是指A的每一个元素都在B中,而且B中的每一个元素都在A中.解题时往往只解答一个问题,忽视另一个问题;解题后注意集合满足元素的互异性.【命题方向】通常是判断两个集合是不是同一个集合;利用相等集合求出变量的值;与集合的运算相联系,也可能与函数的定义域、值域联系命题,多以小题选择题与填空题的形式出现,有时出现在大题的一小问.(2)子集与真子集1、子集定义:一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集(subset).记作:A⊆B(或B⊇A).2、真子集是对于子集来说的.真子集定义:如果集合A⊆B,但存在元素x∈B,且元素x不属于集合A,我们称集合A是集合B的真子集.也就是说如果集合A的所有元素同时都是集合B的元素,则称A是B的子集,若B中有一个元素,而A中没有,且A是B的子集,则称A是B的真子集,注:①空集是所有集合的子集;②所有集合都是其本身的子集;③空集是任何非空集合的真子集例如:所有亚洲国家的集合是地球上所有国家的集合的真子集.所有的自然数的集合是所有整数的集合的真子集.{1,3}⊂{1,2,3,4}{1,2,3,4}⊆{1,2,3,4}3、真子集和子集的区别子集就是一个集合中的全部元素是另一个集合中的元素,有可能与另一个集合相等;真子集就是一个集合中的元素全部是另一个集合中的元素,但不存在相等;注意集合的元素是要用大括号括起来的“{}”,如{1,2},{a,b,g};另外,{1,2}的子集有:空集,{1},{2},{1,2}.真子集有:空集,{1},{2}.一般来说,真子集是在所有子集中去掉它本身,所以对于含有n个(n不等于0)元素的集合而言,它的子集就有2n个;真子集就有2n﹣1.但空集属特殊情况,它只有一个子集,没有真子集.注意:空集是任何集合的子集,是任何非空集合的真子集【解题方法点拨】注意真子集和子集的区别,不可混为一谈,A⊆B,并且B⊆A时,有A=B,但是A⊂B,并且B⊂A,是不能同时成立的;子集个数的求法,空集与自身是不可忽视的.【命题方向】本考点要求理解,高考会考中多以选择题、填空题为主,曾经考查子集个数问题,常常与集合的运算,概率,函数的基本性质结合命题.考点二:集合的基本运算(1)集合的基本运算集合的并集集合的交集集合的补集符号表示A∪BA∩B若全集为U,则集合A的补集为∁UA图形表示集合表示{x|x∈A,或x∈B}{x|x∈A,且x∈B}{x|x∈U,且x∉A}(2)集合的运算性质(1)A∩A=A,A∩=,A∩B=B∩A.(2)A∪A=A,A∪=A,A∪B=B∪A.(3)A∩(∁UA)=,A∪(∁UA)=U,∁U(∁UA)=A.5.常用结论(1)空集性质:①空集只有一个子集,即它的本身,∅⊆∅;②空集是任何集合的子集(即∅⊆A);空集是任何非空集合的真子集(若A≠∅,则∅ÜA).(2)子集个数:若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个,非空真子集有22n个.(3)A∩B=A⇔A⊆B;A∪B=A⇔A⊇B.(4)(∁UA)∩(∁UB)=∁U(A∪B),(∁UA)∪(∁UB)=∁U(A∩B).一.集合的含义(共3小题)1.(2022秋•保定期末)下列说法正确的是()A.高一年级全体高个子同学可以组成一个集合B.0∈N*C.∃x∈R,x2+x+1≤0D.符合条件{a,b,c}⊆P⊆{a,b,c,d,e}集合P有4个【分析】根据集合的特征可判断A,利用N*为正整数集可判断B,根据存在量词命题的真假可判断C,根据子集的定义可判断D.【解答】解:对于A,高个子同学具有不确定性,故不能组成一个集合,故错误;对于B,N*是正整数集,所以0∉N*,故错误;对于C,x2+x+1=(x+)2+≥>0,故错误;对于D,因为{a,b,c}⊆P⊆{a,b,c,d,e},五、题型方法所以P可为{a,b,c},{a,b,c,d},{a,b,c,e},{a,b,c,d,e},故正确;故选:D.【点评】本题考查判断元素能否构成集合,判断元素与集合的关系,判断集合的子集(真子集)的个数,判断特称(存在性)命题的真假,属于基础题.2.(2022秋•南昌期末)已知集合M={(x,y)|x,y∈N*,x+y≤2},则M中元素的个数为()A.1B.2C.3D.4【分析】根据正整数集的定义以及集合的定义即可求解.【解答】解:因为集合M={(x,y)|x,y∈N*,x+y≤2},所以当x=1时,y=1,即集合M={(1,1)},所以集合M中元素个数为1个,故选:A.【点评】本题考查了集合的定义,涉及到正整数集的定义,考查了学生的转化能力,属于基础题.3.(2022秋•浦东新区期末)请将下列各组对象能组成集合的序号填在后面的横线上.①上海市2022年入学的全体高一年级新生;②在平面直角坐标系中,到定点(0,0)的距离等于1的所有点;③影响力比较大的中国数学家;④不等式3x﹣10<0的所有正整数解.【分析】根据已知条件,结合集合的含义,即可求解.【解答】解:①上海市2022年入学的全体高一年级新生,符合集合的定义,故①正确,②在平面直角坐标系中,到定点(0,0)的距离等于1的所有点,符合集合的定义,故②正确,③影响力比较大的中国数学家,不符合集合的确定性,故③错误,④不等式3x﹣10<0的所有正整数解,即原不等式的集合为{1,2,3},符合集合的定义,故④正确.故答案为:①②④.【点评】本题主要考查集合的含义,属于基础题.二.元素与集合关系的判断(共3小题)4.(2022秋•衡阳期末)集合A={x|logπx>1},则()A.1∈AB.2∈AC.3∈AD.4∈A【分析】求出集合A,结合元素与集合关系判断即可.【解答】解:∵logπx>1=logππ,∴x>π,∴A={x|x>π},可知1∉A,2∉A,3∉A,故A、B、C错误;4∈A,故D正确.故选:D.【点评】本题主要考查元素与集合关系的判断,考查运算求解能力,属于基础题.5.(2022秋•西安期末)集合A={1,2,3},B={2,3,4},M={x|x=a+b,a∈A,b∈B},则M中的元素个数为()A.3B.4C.5D.6【分析】利用已知条件,直接求出a+b,根据集合中元素互异性特点,可求得集合M中元素的个数.【解答】解:因为集合A={1,2,3},B={2,3,4},M={x|x=a+b,a∈A,b∈B},所以a+b的值可能为:1+2=3、1+3=4、1+4=5、2+2=4、2+3=5、2+4=6、3+2=5、3+3=6、3+4=7,所以M中元素只有:3,4,5,6,7,共5个,故选:C.【点评】本题考查集合中元素个数的最值,集合中元素的互异性的应用,考查计算能力,属于基础题.6.(2022秋•徐汇区期末)若集合A同时具有以下三个性质:(1)0∈A,1∈A;(2)若x、y∈A,则x﹣y∈A;(3)若x∈A且x≠0,则.则称A为“好集”.已知命题:①集合{1,0,﹣1}是好集;②对任意一个“好集”A,若x、y∈A,则x+y∈A.以下判断正确的是()A.①和②均为真命题B.①和②均为假命题C.①为真命题,②为假命题D.①为假命题,②为真命题【分析】根据“好集”的定义逐一判断即可.【解答】解:对于①,因为1∈{1,0,﹣1},﹣1∈{1,0,﹣1},而﹣1﹣1=﹣2∉{﹣1,0,1},所以集合{1,0,﹣1}不是“好集”,故①错误;对于②,因为集合A是“好集”,所以0∈A,0﹣y=﹣y∈A,所以x﹣(﹣y)=x+y∈A,故②正确,所以①为假命题,②为真命题,故选:D.【点评】本题主要考查了集合的新定义问题