考点08三角函数(30种题型8个易错考点)考题考点考向2022新高考1第6题三角函数的性质及其应用求值2022新高考1第18题解三角形及其综合应用求角度及最值2022新高考2第6题三角恒等变换求正切值2022新高考2第9题三角函数的性质及其应用求单调区间,对称轴2021新高考1第4题三角函数的性质及其应用求解单调区间2021新高考1第6题三角恒等变换给值求值问题2021新高考2第18题解三角形及其综合应用求三角形的面积,应用余弦定理判断三角形的形状本专题是高考常考内容,结合往年命题规律,命制三角函数恒等变换题目,诸如“给值求角”“给值求值”“给角求值”,给定函数部分图象,求解函数解析式。以选择题、填空题为主,分值为5分,而结合三角函数恒等变换与三角函数图像与性质、解三角形的题目多以解答题的形式出现,分值为10分。一.选择题(共4小题)1.(2021•新高考Ⅰ)下列区间中,函数f(x)=7sin(x﹣)单调递增的区间是()A.(0,)B.(,π)C.(π,)D.(,2π)【分析】本题需要借助正弦函数单调增区间的相关知识点求解.【解答】解:令,k∈Z.则,k∈Z.当k=0时,x∈[,],(0,)⊆[,],故选:A.【点评】本题考查正弦函数单调性,是简单题.2.(2021•新高考Ⅰ)已知F1,F2是椭圆C:+=1的两个焦点,点M在C上,则|MF1|一、真题多维细目表二、命题规律与备考策略三、2022真题抢先刷,考向提前知•|MF2|的最大值为()A.13B.12C.9D.6【分析】利用椭圆的定义,结合基本不等式,转化求解即可.【解答】解:F1,F2是椭圆C:+=1的两个焦点,点M在C上,|MF1|+|MF2|=6,所以|MF1|•|MF2|≤=9,当且仅当|MF1|=|MF2|=3时,取等号,所以|MF1|•|MF2|的最大值为9.故选:C.【点评】本题考查椭圆的简单性质的应用,基本不等式的应用,是基础题.3.(2022•新高考Ⅰ)记函数f(x)=sin(ωx+)+b(ω>0)的最小正周期为T.若<T<π,且y=f(x)的图像关于点(,2)中心对称,则f()=()A.1B.C.D.3【分析】由周期范围求得ω的范围,由对称中心求解ω与b值,可得函数解析式,则f()可求.【解答】解:函数f(x)=sin(ωx+)+b(ω>0)的最小正周期为T,则T=,由<T<π,得<<π,∴2<ω<3,∵y=f(x)的图像关于点(,2)中心对称,∴b=2,且sin(+)=0,则+=kπ,k∈Z.∴,k∈Z,取k=4,可得.∴f(x)=sin(x+)+2,则f()=sin(×+)+2=﹣1+2=1.故选:A.【点评】本题考查y=Asin(ωx+φ)型函数的图象与性质,考查逻辑思维能力与运算求解能力,是中档题.4.(2022•新高考Ⅱ)若sin(α+β)+cos(α+β)=2cos(α+)sinβ,则()A.tan(α﹣β)=1B.tan(α+β)=1C.tan(α﹣β)=﹣1D.tan(α+β)=﹣1【分析】解法一:由已知结合辅助角公式及和差角公式对已知等式进行化简可求α﹣β,进而可求.解法二:根据已知条件,结合三角函数的两角和公式,即可求解.【解答】解:解法一:因为sin(α+β)+cos(α+β)=2cos(α+)sinβ,所以sin()=2cos(α+)sinβ,即sin()=2cos(α+)sinβ,所以sin()cosβ+sinβcos()=2cos(α+)sinβ,所以sin()cosβ﹣sinβcos()=0,所以sin()=0,所以=kπ,k∈Z,所以α﹣β=k,所以tan(α﹣β)=﹣1.解法二:由题意可得,sinαcosβ+cosαsinβ+cosαcosβ﹣sinαsinβ=2(cosα﹣sinα)sinβ,即sinαcosβ﹣cosαsinβ+cosαcosβ+sinαsinβ=0,所以sin(α﹣β)+cos(α﹣β)=0,故tan(α﹣β)=﹣1.故选:C.【点评】本题主要考查了辅助角公式,和差角公式在三角化简求值中的应用,解题的关键是公式的灵活应用,属于中档题.二.多选题(共1小题)(多选)5.(2022•新高考Ⅱ)已知函数f(x)=sin(2x+φ)(0<φ<π)的图像关于点(,0)中心对称,则()A.f(x)在区间(0,)单调递减B.f(x)在区间(﹣,)有两个极值点C.直线x=是曲线y=f(x)的对称轴D.直线y=﹣x是曲线y=f(x)的切线【分析】直接利用函数的对称性求出函数的关系式,进一步利用函数的性质的判断A、B、C、D的真假.【解答】解:因为f(x)=sin(2x+φ)(0<φ<π)的图象关于点(,0)对称,所以+φ=kπ,k∈Z,所以φ=kπ﹣,因为0<φ<π,所以φ=,故f(x)=sin(2x+),令2x+,解得﹣<x<,故f(x)在(0,)单调递减,A正确;x∈(﹣,),2x+∈(,),根据函数的单调性,故函数f(x)在区间(﹣,)只有一个极值点,故B错误;令2x+=kπ+,k∈Z,得x=﹣,k∈Z,C显然错误;f(x)=sin(2x+),求导可得,f'(x)=,令f'(x)=﹣1,即,解得x=kπ或(k∈Z),故函数y=f(x)在点(0,)处的切线斜率为k=,故切线方程为y﹣,即y=,故D正确.故选:AD.【点评】本题考查的知识要点:三角函数关系式的求法,函数的性质的应用,主要考查学生的运算能力和数学思维能力,属于基础题.三.解答题(共2小题)6.(2022•新高考Ⅰ)记△ABC的内角A,B,C的对边分别为a,b,c,已知=.(1)若C=,求B;(2)求的最小值.【分析】(1)利用倍角公式、和差公式、三角形内角和定理即可得出B.(2)利用诱导公式把A用C表示,再利用正弦定理、倍角公式、基本不等式即可得出结论.【解答】解:(1)∵=,1+cos2B=2cos2B≠0,cosB≠0.∴==,化为:cosAcosB=sinAsinB+sinB,∴cos(B+A)=sinB,∴﹣cosC=sinB,C=,∴sinB=,∵0<B<,∴B=.(2)由(1)可得:﹣cosC=sinB>0,∴cosC<0,C∈(,π),∴C为钝角,B,A都为锐角,B=C﹣.sinA=sin(B+C)=sin(2C﹣)=﹣cos2C,=====+4sin2C﹣5≥2﹣5=4﹣5,当且仅当sinC=时取等号.∴的最小值为4﹣5.【点评】本题考查了倍角公式、和差公式、三角形内角和定理、余弦定理、基本不等式、转化方法,考查了推理能力与计算能力,属于中档题.7.(2021•新高考Ⅱ)在△ABC中,角A,B,C所对的边长为a,b,c,b=a+1,c=a+2.(1)若2sinC=3sinA,求△ABC的面积;(2)是否存在正整数a,使得△ABC为钝角三角形?若存在,求出a的值;若不存在,说明理由.【分析】(1)根据已知条件,以及正弦定理,可得a=4,b=5,c=6,再结合余弦定理、三角形面积公式,即可求解,(2)由c>b>a,可推得△ABC为钝角三角形时,角C必为钝角,运用余弦定理可推得a2﹣2a﹣3<0,再结合a>0,三角形的任意两边之和大于第三边定理,即可求解.【解答】解:(1)∵2sinC=3sinA,∴根据正弦定理可得2c=3a,∵b=a+1,c=a+2,∴a=4,b=5,c=6,在△ABC中,运用余弦定理可得,∵sin2C+cos2C=1,∴sinC=,∴=.(2)∵c>b>a,∴△ABC为钝角三角形时,角C必为钝角,=,∴a2﹣2a﹣3<0,∵a>0,∴0<a<3,∵三角形的任意两边之和大于第三边,∴a+b>c,即a+a+1>a+2,即a>1,∴1<a<3,∵a为正整数,∴a=2.【点评】本题主要考查了正弦定理和余弦定理的运用.考查了学生对三角函数基础知识的综合运用.四、考点清单一.任意角的概念一、角的有关概念1.从运动的角度看,角可分为正角、负角和零角.2.从终边位置来看,可分为象限角与轴线角.3.若β与α是终边相同的角,则β用α表示为β=2kπ+α(k∈Z).【解题方法点拨】角的概念注意的问题注意易混概念的区别:第一象限角、锐角、小于90°的角是概念不同的三类角,第一类是象限角,第二类、第三类是区间角.二.终边相同的角终边相同的角:k•360°+α(k∈Z)它是与α角的终边相同的角,(k=0时,就是α本身),凡是终边相同的两个角,则它们之差一定是360°的整数倍,应该注意的是:两个相等的角终边一定相同,而有相同的终边的两个角则不一定相等,也就是说,终边相同是两个角相等的必要条件,而不是充分条件.还应该注意到:A={x|x=k•360°+30°,k∈Z}与集合B={x|x=k•360°﹣330°,k∈Z}是相等的集合.相应的与x轴正方向终边相同的角的集合是{x|x=k•360°,k∈Z};与x轴负方向终边相同的角的集合是{x|x=k•360°+180°,k∈Z};与y轴正方向终边相同的角的集合是{x|x=k•360°+90°,k∈Z};与y轴负方向终边相同的角的集合是{x|x=k•360°+270°,k∈Z}【解题方法点拨】终边相同的角的应用(1)利用终边相同的角的集合S={β|β=2kπ+α,k∈Z}判断一个角β所在的象限时,只需把这个角写成[0,2π)范围内的一个角α与2π的整数倍的和,然后判断角α的象限.(2)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k赋值来求得所需角.三.象限角、轴线角在直角坐标系内讨论角(1)象限角:角的顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边在第几象限,就认为这个角是第几象限角.(2)若角的终边在坐标轴上,就认为这个角不属于任何一个象限.(3)所有与角α终边相同的角连同角α在内,可构成一个集合S={β|β=α+k•360°,k∈Z}.【解题方法点拨】(1)注意易混概念的区别:第一象限角、锐角、小于90°的角是概念不同的三类角,第一类是象限角,第二类、第三类是区间角.(2)角度制与弧度制可利用180°=πrad进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.(3)注意熟记0°~360°间特殊角的弧度表示,以方便解题.四.弧度制1弧度的角把长度等于半径长的弧所对的圆心角叫做1弧度的角.规定:正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,|α|=,l是以角α作为圆心角时所对圆弧的长,r为半径.2.弧度制把弧度作为单位来度量角的单位制叫做弧度制,比值与所取的r的大小无关,仅与角的大小有关.【解题方法点拨】角度制与弧度制不可混用角度制与弧度制可利用180°=πrad进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.五.弧长公式弧长、扇形面积的公式设扇形的弧长为l,圆心角大小为α(rad),半径为r,则l=rα,扇形的面积为S=lr=r2α.【解题方法点拨】弧长和扇形面积的计算方法(1)在弧度制下,计算扇形的面积和弧长比在角度制下更方便、简捷.(2)从扇形面积出发,在弧度制下使问题转化为关于α的不等式或利用二次函数求最值的方法确定相应最值.(3)记住下列公式:①l=αR;②S=lR;③S=αR2.其中R是扇形的半径,l是弧长,α(0<α<2π)为圆心角,S是扇形面积.六.扇形面积公式弧长、扇形面积的公式设扇形的弧长为l,圆心角大小为α(rad),半径为r,则l=rα,扇形的面积为S=lr=r2α.【解题方法点拨】弧长和扇形面积的计算方法(1)在弧度制下,计算扇形的面积和弧长比在角度制下更方便、简捷.(2)从扇形面积出发,在弧度制下使问题转化为关于α的不等式或利用二次函数求最值的方法确定相应最值.(3)记住下列公式:①l=αR;②S=lR;③S=αR2.其中R是扇形的半径,l是弧长,α(0<α<2π)为圆心角,S是扇形面积.七.任意角的三角函数的定义任意角的三角函数1定义:设α是一个任意角,它的终边与单位圆交于点P(x,y),那么sinα=y,cosα=x,tanα=.2