第08讲函数模型及其应用(模拟精练+真题演练)1.(2023·河南郑州·洛宁县第一高级中学校联考模拟预测)水雾喷头布置的基本原则是:保护对象的水雾喷头数量应根据设计喷雾强度、保护面积和水雾喷头特性,按水雾喷头流量q(单位:L/min)计算公式为10qKP和保护对象的水雾喷头数量N计算公式为SWNq计算确定,其中P为水雾喷头的工作压力(单位:MPa),K为水雾喷头的流量系数(其值由喷头制造商提供),S为保护对象的保护面积,W为保护对象的设计喷雾强度(单位:L/min·m2),水雾喷头的布置应使水雾直接喷射和完全覆盖保护对象,如不能满足要求时应增加水雾喷头的数量.当水雾喷头的工作压力P为0.35MPa,水雾喷头的流量系数K为24.96,保护对象的保护面积S为14m2,保护对象的设计喷雾强度W为20L/min·m2时,保护对象的水雾喷头的数量N约为()(参考数据:3.51.87)A.4个B.5个C.6个D.7个2.(2023·浙江·校联考二模)提丢斯一波得定则,简称“波得定律”,是表示各行星与太阳平均距离的一种经验规则.它是在1766年德国的一位中学教师戴维·提丢斯发现的.后来被柏林天文台的台长波得归纳成了一个如下经验公式来表示:记太阳到地球的平均距离为1,若某行星的编号为n,则该行星到太阳的平均距离表示为12nab,那么编号为9的行星用该公式推得的平均距离位于()行星金星地球火星谷神星木星土星天王星海王星编号12345678公式推得值0.711.62.85.21019.638.8实测值0.7211.522.95.29.5419.1830.06A.30,50B.50,60C.60,70D.70,803.(2023·四川内江·四川省内江市第六中学校考模拟预测)英国物理学家和数学家牛顿曾提出物体在常温环境下温度变化的冷却模型.如果物体的初始温度是1,环境温度是0,则经过mint物体的温度将满足010ekt,其中k是一个随着物体与空气的接触情况而定的正常数.现有90C的物体,若放在10C的空气中冷却,经过10min物体的温度为50C,则若使物体的温度为20C,需要冷却()A.17.5minB.25.5minC.30minD.32.5min4.(2023·福建福州·统考模拟预测)为落实党的二十大提出的“加快建设农业强国,扎实推动乡村振兴”的目标,银行拟在乡村开展小额贷款业务.根据调查的数据,建立了实际还款比例P关于贷款人的年收入x(单位:万元)的Logistic,模型:0.96800.96801kxkxPxee,已知当贷款人的年收入为8万元时,其实际还款比例为50%.若银行希望实际还款比例为40%,则贷款人的年收入为()(精确到0.01万元,参考数据:ln31.0986,ln20.6931)A.4.65万元B.5.63万元C.6.40万元D.10.00万元5.(2023·江苏南通·统考模拟预测)为了贯彻落实《中共中央国务院关于深入打好污染防治攻坚战的意见》,某造纸企业的污染治理科研小组积极探索改良工艺,使排放的污水中含有的污染物数量逐渐减少.已知改良工艺前所排放废水中含有的污染物数量为32.25g/m,首次改良工艺后排放的废水中含有的污染物数量为32.21g/m,第n次改良工艺后排放的废水中含有的污染物数量nr满足函数模型0.25*0103,ntnrrrrtnRN,其中0r为改良工艺前所排放的废水中含有的污染物数量,1r为首次改良工艺后所排放的废水中含有的污染物数量,n为改良工艺的次数.假设废水中含有的污染物数量不超过30.25g/m时符合废水排放标准,若该企业排放的废水符合排放标准,则改良工艺的次数最少要()(参考数据:lg20.30,lg30.48)A.14次B.15次C.16次D.17次6.(2023·江西·校联考二模)草莓中有多种氨基酸、微量元素、维生素,能够调节免疫功能,增强机体免疫力.草莓味甘、性凉,有润肺生津,健脾养胃等功效,受到众人的喜爱.根据草莓单果的重量,可将其从小到大依次分为4个等级,其等级x(1,2,3,4x)与其对应等级的市场销售单价(y单位:元/千克)近似满足函数关系式eaxby.若花同样的钱买到的1级草莓比4级草莓多1倍,且1级草莓的市场销售单价为24元/千克,则3级草莓的市场销售单价最接近()(参考数据:321.26,341.59)A.30.24元/千克B.33.84元/千克C.38.16元/千克D.42.64元/千克7.(2023·重庆·统考模拟预测)中华人民共和国国家标准《居室空气中甲醛的卫生标准》规定:居室空气中甲醛的最高容许浓度为:一类建筑30.08mg/m,二类建筑30.1mg/m.二类建筑室内甲醛浓度小于等于30.1mg/m为安全范围,已知某学校教学楼(二类建筑)施工过程中使用了甲醛喷剂,处于良好的通风环境下时,竣工2周后室内甲醛浓度为32.25mg/m,4周后室内甲醛浓度为30.36mg/m,且室内甲醛浓度()t(单位:3mg/m)与竣工后保持良好通风的时间ttN(单位:周)近似满足函数关系式()eatbt,则该教学楼竣工后的甲醛浓度若要达到安全开放标准,至少需要放置的时间为()A.5周B.6周C.7周D.8周8.(2023·山西朔州·怀仁市第一中学校校考模拟预测)为研究每平方米平均建筑费用与楼层数的关系,某开发商收集了一栋住宅楼在建筑过程中,建筑费用的相关信息,将总楼层数x与每平米平均建筑成本y(单位:万元)的数据整理成如图所示的散点图:则下面四个回归方程类型中最适宜作为每平米平均建筑费用y和楼层数x的回归方程类型的是()A.yabxB.exyabC.byaxD.2yabx9.(多选题)(2023·辽宁大连·统考三模)甲乙两队进行比赛,若双方实力随时间的变化遵循兰彻斯特模型:0000eeee22eeee22 xxxxxxxxXYbxtaYXaytbxabt其中正实数00,XY分别为甲、乙两方初始实力,t为比赛时间;,xtyt分别为甲、乙两方t时刻的实力;正实数,ab分别为甲对乙、乙对甲的比赛效果系数.规定当甲、乙两方任何一方实力为0时比赛结束,另一方获得比赛胜利,并记比赛持续时长为T.则下列结论正确的是()A.若00XY且ab,则0xtyttTB.若00XY且ab,则00001lnXYTaXYC.若00XbYa,则甲比赛胜利D.若00XbYa,则甲比赛胜利10.(多选题)(2023·全国·高三专题练习)如图所示为某池塘中野生水葫芦的面积与时间的函数关系的图象,假设其函数关系为指数函数,现给出下列说法,其中正确的说法有()A.野生水葫芦的面积每月增长量相等B.野生水葫芦从29m蔓延到236m历时超过1个月C.设野生水葫芦蔓延到29m,220m,240m所需的时间分别为1t,2t,3t,则有1322tttD.野生水葫芦在第1个月到第3个月之间蔓延的平均速度等于在第2个月到第4个月之间蔓延的平均速度11.(多选题)(2023·全国·高三专题练习)牛顿曾提出了物体在常温环境下温度变化的冷却模型:若物体初始温度是0(单位:℃),环境温度是1(单位:℃),其中01、则经过t分钟后物体的温度将满足101ektft(kR且0k).现有一杯100C的热红茶置于10C的房间里,根据这一模型研究红茶冷却情况,下列结论正确的是()(参考数值ln20.7,ln31.1)A.若340Cf,则620CfB.若110k,则红茶下降到55C所需时间大约为6分钟C.5分钟后物体的温度是40Co,k约为0.22D.红茶温度从80C下降到60C所需的时间比从60C下降到40Co所需的时间多12.(多选题)(2023·全国·高三专题练习)某地下车库在排气扇发生故障的情况下测得空气中一氧化碳含量达到了危险状态,经抢修排气扇恢复正常,排气4分钟后测得车库内的一氧化碳浓度为64ppm,继续排气4分钟后又测得浓度为32ppm.由检验知该地下车库一氧化碳浓度y(单位:ppm)与排气时间t(单位:分)之间满足函数关系y=f(t),其中()()ftRft(R为常数).若空气中一氧化碳浓度不高于0.5ppm,人就可以安全进入车库了,则下列说法正确的是()A.14eRB.ln24RC.排气12分钟后,人可以安全进入车库D.排气32分钟后,人可以安全进入车库13.(2023·北京朝阳·统考一模)某军区红、蓝两方进行战斗演习,假设双方兵力(战斗单位数)随时间的变化遵循兰彻斯特模型:0000coshsinhcoshsinhbxtXabtYabtaaytYabtXabtb,其中正实数0X,0Y分别为红、蓝两方初始兵力,t为战斗时间;xt,yt分别为红、蓝两方t时刻的兵力;正实数a,b分别为红方对蓝方、蓝方对红方的战斗效果系数;eecosh2xxx和eesinh2xxx分别为双曲余弦函数和双曲正弦函数.规定当红、蓝两方任何一方兵力为0时战斗演习结束,另一方获得战斗演习胜利,并记战斗持续时长为T.给出下列四个结论:①若00XY且ab,则0xtyttT;②若00XY且ab,则00001lnXYTaXY;③若00XbYa,则红方获得战斗演习胜利;④若00XbYa,则红方获得战斗演习胜利.其中所有正确结论的序号是________.14.(2023·陕西西安·统考一模)我们可以用下面的方法在线段上构造出一个特殊的点集:如图,取一条长度为1的线段,第1次操作,将该线段三等分,去掉中间一段,留下两段;第2次操作,将留下的两段分别三等分,各去掉中间一段,留下四段;按照这种规律一直操作下去.若经过n次这样的操作后,去掉的所有线段的长度总和大于99100,则n的最小值为__________.(参考数据:lg20.301,lg30.477)15.(2023·上海长宁·统考一模)研究发现,某昆虫释放信息素t秒后,在距释放处x米的地方测得的信息素浓度y满足21lnln2kytxat,其中,ka为非零常数;已知释放1秒后,在距释放处2米的地方测得信息素浓度为m,则释放信息素4秒后,距释放处的___________米的位置,信息素浓度为2m.16.(2023·全国·长郡中学校联考模拟预测)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就.实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L点的轨道运行.2L点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M2,地月距离为R,2L点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:121223()()MMMRrRrrR.设rR,由于的值很小,因此在近似计算中34532333(1),则r的近似值为_________.1.(2021•北京)某一时段内,从天空降落到地面上的雨水,未经蒸发、渗漏、流失而在水平面上积聚的深度,称为这个时段的降雨量(单位:)mm.24h降雨量的等级划分如下:等级24h降雨量(精确到0.1)小雨0.1~9.9中雨10.0~24.9大雨25.0~49.9暴雨50.0~99.9在综合实践活动中,某小组自制了一个底面直径为200mm,高为300mm的圆锥形雨量器.若一次降雨过程中,该雨量器收集的24h的雨水高度是150mm(如图所示),则这24h降雨量