§10.4随机事件与概率考试要求1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.2.理解事件间的关系与运算.3.掌握古典概型及其计算公式,能计算古典概型中简单随机事件的概率.知识梳理1.样本空间和随机事件(1)样本点和有限样本空间①样本点:随机试验E的每个可能的称为样本点,常用ω表示.全体样本点的集合称为试验E的,常用Ω表示.②有限样本空间:如果一个随机试验有n个可能结果ω1,ω2,…,ωn,则称样本空间Ω={ω1,ω2,…,ωn}为有限样本空间.(2)随机事件①定义:将样本空间Ω的称为随机事件,简称事件.②表示:一般用大写字母A,B,C,…表示.③随机事件的极端情形:、.2.两个事件的关系和运算含义符号表示包含关系若A发生,则B一定发生相等关系B⊇A且A⊇B并事件(和事件)A∪B或A+B交事件(积事件)A与B同时发生互斥(互不相容)A与B不能同时发生A∩B=∅互为对立A与B有且仅有一个发生3.古典概型的特征(1)有限性:样本空间的样本点只有;(2)等可能性:每个样本点发生的可能性.4.古典概型的概率公式一般地,设试验E是古典概型,样本空间Ω包含n个样本点,事件A包含其中的k个样本点,则定义事件A的概率P(A)==nAnΩ.其中,n(A)和n(Ω)分别表示事件A和样本空间Ω包含的样本点个数.5.概率的性质性质1:对任意的事件A,都有P(A)≥0;性质2:必然事件的概率为1,不可能事件的概率为0,即P(Ω)=1,P(∅)=0;性质3:如果事件A与事件B互斥,那么P(A∪B)=;性质4:如果事件A与事件B互为对立事件,那么P(B)=1-P(A),P(A)=;性质5:如果A⊆B,那么P(A)≤P(B),由该性质可得,对于任意事件A,因为∅⊆A⊆Ω,所以0≤P(A)≤1;性质6:设A,B是一个随机试验中的两个事件,有P(A∪B)=.6.频率与概率(1)频率的稳定性一般地,随着试验次数n的增大,频率偏离概率的幅度会缩小,即事件A发生的频率fn(A)会逐渐事件A发生的概率P(A),我们称频率的这个性质为频率的稳定性.(2)频率稳定性的作用可以用频率fn(A)估计概率P(A).常用结论1.当随机事件A,B互斥时,不一定对立;当随机事件A,B对立时,一定互斥,即两事件互斥是对立的必要不充分条件.2.若事件A1,A2,…,An两两互斥,则P(A1∪A2∪…∪An)=P(A1)+P(A2)+…+P(An).思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)事件发生的频率与概率是相同的.()(2)两个事件的和事件发生是指这两个事件至少有一个发生.()(3)从-3,-2,-1,0,1,2中任取一个数,取到的数小于0与不小于0的可能性相同.()(4)若A∪B是必然事件,则A与B是对立事件.()教材改编题1.一个人打靶时连续射击两次,事件“至多有一次中靶”的互斥事件是()A.至少有一次中靶B.两次都中靶C.只有一次中靶D.两次都不中靶2.从某班学生中任意找出一人,如果该同学的身高小于160cm的概率为0.2,该同学的身高在[160,175](单位:cm)内的概率为0.5,那么该同学的身高超过175cm的概率为()A.0.2B.0.3C.0.7D.0.83.(2022·全国乙卷)从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为________.题型一随机事件命题点1随机事件间关系的判断例1(1)(多选)对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设事件A={两弹都击中飞机},事件B={两弹都没击中飞机},事件C={恰有一弹击中飞机},事件D={至少有一弹击中飞机},则下列关系正确的是()A.A∩D=∅B.B∩D=∅C.A∪C=DD.A∪B=B∪D(2)从装有十个红球和十个白球的罐子里任取两球,下列情况中是互斥而不对立的两个事件的是()A.至少有一个红球;至少有一个白球B.恰有一个红球;都是白球C.至少有一个红球;都是白球D.至多有一个红球;都是红球听课记录:______________________________________________________________________________________________________________________________________命题点2利用互斥、对立事件求概率例2某商场进行有奖销售,购满100元商品得1张奖券,多购多得.1000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:(1)P(A),P(B),P(C);(2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________思维升华事件关系的运算策略进行事件的运算时,一是要紧扣运算的定义,二是要全面考虑同一条件下的试验可能出现的全部结果,必要时可列出全部的试验结果进行分析.当事件是由互斥事件组成时,运用互斥事件的概率加法公式.跟踪训练1(1)(多选)抛掷一枚质地均匀的骰子,有如下随机事件:Ci=“点数为i”,其中i=1,2,3,4,5,6;D1=“点数不大于2”,D2=“点数不小于2”,D3=“点数大于5”;E=“点数为奇数”;F=“点数为偶数”.下列结论正确的是()A.C1与C2对立B.D1与D2不互斥C.D3⊆FD.E⊇(D1∩D2)(2)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次购物量1至4件5至8件9至12件13至16件17件及以上顾客数(人)x3025y10结算时间(分钟/人)11.522.53已知这100位顾客中一次购物量超过8件的顾客占55%.①确定x,y的值,并估计顾客一次购物的结算时间的平均值;②估计一位顾客一次购物的结算时间不超过2分钟的概率.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________题型二古典概型例3(1)(2023·南通质检)我国数学家张益唐在“孪生素数”研究方面取得突破,孪生素数也称为孪生质数,就是指两个相差2的素数,例如5和7.在大于3且不超过20的素数中,随机选取2个不同的数,恰好是一组孪生素数的概率为()A.356B.328C.17D.15(2)在一次比赛中某队共有甲、乙、丙等5位选手参加,赛前用抽签的方法决定出场顺序,则乙、丙都不与甲相邻出场的概率是()A.110B.15C.25D.310听课记录:______________________________________________________________________________________________________________________________________思维升华利用公式法求解古典概型问题的步骤跟踪训练2(1)(2022·全国甲卷)从分别写有1,2,3,4,5,6的6张卡片中无放回地随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为()A.15B.13C.25D.23(2)(2022·宜宾质检)2022年冬奥会在北京、延庆、张家口三个区域布置赛场,北京承办所有冰上项目,延庆和张家口承办所有雪上项目.组委会招聘了包括甲在内的4名志愿者,准备分配到上述3个赛场参与赛后维护服务工作,要求每个赛场至少分到一名志愿者,则志愿者甲正好分到北京赛场的概率为________.题型三概率与统计的综合问题例4北京冬奥会顺利闭幕后,某学校团委组织了一次“奥运会”知识讲座活动,活动结束后随机抽取120名学生对讲座情况进行调查,其中男生与女生的人数之比为1∶1,抽取的学生中男生有40名对讲座活动满意,女生中有30名对讲座活动不满意.(1)完成下面2×2列联表,并依据小概率值α=0.10的独立性检验,能否推断对讲座活动是否满意与性别有关?满意不满意合计男生女生合计120(2)从被调查的对讲座活动满意的学生中,利用比例分配的分层随机抽样方法抽取7名学生,再在这7名学生中抽取3名学生谈谈自己听讲座的心得体会,求其中恰好抽中2名男生与1名女生的概率.参考数据:χ2=nad-bc2a+bc+da+cb+d,其中n=a+b+c+d.α0.100.050.010.0050.001xα2.7063.8416.6357.87910.828________________________________________________________________________________________________________________________________________________思维升华求解古典概型的综合问题的步骤(1)将题目条件中的相关知识转化为事件;(2)判断事件是否为古典概型;(3)选用合适的方法确定样本点个数;(4)代入古典概型的概率公式求解.跟踪训练3从参加环保知识竞赛的学生中抽出40名,将其成绩(均为整数)整理后画出频率分布直方图如图所示,观察图形,回答下列问题.(1)成绩在[80,90)这一组的频数、频率分别是多少?(2)估计这次环保知识竞赛成绩的平均数、众数、中位数;(不要求写过程)(3)从成绩是80分以上(包括80分)的学生中选2人,求他们在同一分数段的概率.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________