学研教育—浙江专升本高数一元函数微分学53题及答案一元函数微分学1.设函数)(xf在点0x处可导,则下列选项中不正确的是()A.xyxfx00lim)('B.xxfxxfxfx)()(lim)('0000C.000)()(lim)('0xxxfxfxfxxD.hxfhxfxfh)()21(lim)('00002.若ecosxyx,则'(0)y()A.0B.1C.1D.23.设xxgexfxsin)(,)(,则)]('[xgf()A.xesinB.xecosC.xecosD.xesin4.设函数)(xf在点0x处可导,且2)('0xf,则hxfhxfh)()21(lim000等于()A.1B.2C.1D.215.设)(xf在ax处可导,则xxafxafx)()(lim0=()A.)('afB.)('2afC.0D.)2('af6.设)(xf在2x处可导,且2)2('f,则hhfhfh)2()2(lim0()A.4B.0C.2D.37.设函数)3)(2)(1()(xxxxxf,则)0('f等于()A.0B.6C.1D.38.设)(xf在0x处可导,且1)0('f,则hhfhfh)()(lim0()A.1B.0C.2D.39.设函数)(xf在0x处可导,则0limhhxff)()h-x(00()A.与0x,h都有关B.仅与0x有关,而与h无关C.仅与h有关,而与0x无关D.与0x,h都无关学研教育—浙江专升本高数一元函数微分学53题及答案10.设)(xf在1x处可导,且21)1()21(lim0hfhfh,则)1('f()A.21B.21C.41D.4111.设)0('')(2fexfx则()A.1B.1C.2D.212.导数)'(logxa等于()A.axln1B.axln1C.xxalog1D.x113.若),1()2(249102xxxxy则)29(y=()A.30B.29!C.0D.30×20×1014.设',)(',)()(yxfeefyxfx则存在且=()A.)()()()('xfxxfxeefeefB.)(')(')(xfeefxfxC.)(')()(')()(xfeefeefxfxxfxxD.)()('xfxeef15.设)0('),100()2)(1()(fxxxxxf则()A.100B.100!C.!100D.10016.若',yxyx则()A.1xxxB.xxxlnC.不可导D.)ln1(xxx17.处的导数是在点22)(xxxf()A.1B.0C.1D.不存在18.设',)2(yxyx则()A.)1()2(xxxB.2ln)2(xxC.)2ln21()2(xxxD.)2ln1()2(xxx19.设函数)(xf在区间],[ba上连续,且,0)()(bfaf则()A.)(xf在),(ba内必有最大值或最小值B.)(xf在),(ba内存在唯一的0)(,f使C.)(xf在),(ba内至少存在一个0)(,f使学研教育—浙江专升本高数一元函数微分学53题及答案D.)(xf在),(ba内存在唯一的0)(',f使20.设,)()(xgxfy则dxdy()A.])()(')()('[2xgxgxfxfyB.])(1)(1[2xgxfyC.)()('21xgxfyD.)()('2xgxfy21.若函数)(xf在区间)ba,(内可导,则下列选项中不正确的是()A.若在)ba,(内0)('xf,则)(xf在)ba,(内单调增加B.若在)ba,(内0)('xf,则)(xf在)ba,(内单调减少C.若在)ba,(内0)('xf,则)(xf在)ba,(内单调增加D.)(xf在区间)ba,(内每一点处的导数都存在22.若)(yxf在点0x处导数存在,则函数曲线在点))(,(00xfx处的切线的斜率为()A.)('0xfB.)(0xfC.0D.123.设函数)(yxf为可导函数,其曲线的切线方程的斜率为1k,法线方程的斜率为2k,则1k与2k的关系为()A.211kkB.121kkC.121kkD.021kk24.设0x为函数)(xf在区间ba,上的一个极小值点,则对于区间ba,上的任何点x,下列说法正确的是()A.)()(0xfxfB.)()(0xfxfC.)()(0xfxfD.)()(0xfxf25.设函数)(xf在点0x的一个邻域内可导且0)('0xf(或)('0xf不存在),下列说法不正确的是()A.若0xx时,0)('xf;而0xx时,0)('xf,那么函数)(xf在0x处取得极大值B.若0xx时,0)('xf;而0xx时,0)('xf,那么函数)(xf在0x处取得极小值C.若0xx时,0)('xf;而0xx时,0)('xf,那么函数)(xf在0x处取得极大值学研教育—浙江专升本高数一元函数微分学53题及答案D.如果当x在0x左右两侧邻近取值时,)('xf不改变符号,那么函数)(xf在0x处没有极值26.0)('0xf,0)(''0xf,若0)(''0xf,则函数)(xf在0x处取得()A.极大值B.极小值C.极值点D.驻点27.bxa时,恒有0)(xf,则曲线)(xfy在ba,内()A.单调增加B.单调减少C.上凹D.下凹28.数()exfxx的单调区间是().A.在),(上单增B.在),(上单减C.在(,0)上单增,在(0,)上单减D.在(,0)上单减,在(0,)上单增29.数43()2fxxx的极值为().A.有极小值为(3)fB.有极小值为(0)fC.有极大值为(1)fD.有极大值为(1)f30.xey在点(0,1)处的切线方程为()A.xy1B.xy1C.xy1D.xy131.函数xxxxxf处的切线与的图形在点)1,0(162131)(23轴交点的坐标是()A.)0,61(B.)0,1(C.)0,61(D.)0,1(32.抛物线xy在横坐标4x的切线方程为()A.044yxB.044yxC.0184yxD.0184yx33.线)0,1()1(2在xy点处的切线方程是()A.1xyB.1xyC.1xyD.1xy34.曲线)(xfy在点x处的切线斜率为,21)('xxf且过点(1,1),则该曲线的方程是()A.12xxyB.12xxyC.12xxyD.12xxy35.线22)121(xeyx上的横坐标的点0x处的切线与法线方程()A.063023yxyx与B.063023yxyx与学研教育—浙江专升本高数一元函数微分学53题及答案C.063023yxyx与D.063023yxyx与36.函数处在点则0)(,)(3xxfxxf()A.可微B.不连续C.有切线,但该切线的斜率为无穷D.无切线37.以下结论正确的是()A.导数不存在的点一定不是极值点B.驻点肯定是极值点C.导数不存在的点处切线一定不存在D.0)('0xf是可微函数)(xf在0x点处取得极值的必要条件38.若函数)(xf在0x处的导数,0)0('f则0x称为)(xf的()A.极大值点B.极小值点C.极值点D.驻点39.曲线)1ln()(2xxf的拐点是()A.)1ln,1(与)1ln,1(B.)2ln,1(与)2ln,1(C.)1,2(ln与)1,2(lnD.)2ln,1(与)2ln,1(40.线弧向上凹与向下凹的分界点是曲线的()A.驻点B.极值点C.切线不存在的点D.拐点41.数)(xfy在区间[a,b]上连续,则该函数在区间[a,b]上()A.一定有最大值无最小值B.一定有最小值无最大值C.没有最大值也无最小值D.既有最大值也有最小值42.下列结论正确的有()A.0x是)(xf的驻点,则一定是)(xf的极值点B.0x是)(xf的极值点,则一定是)(xf的驻点C.)(xf在0x处可导,则一定在0x处连续D.)(xf在0x处连续,则一定在0x处可导43.由方程yxexy确定的隐函数)(xyydxdy()A.)1()1(xyyxB.)1()1(yxxyC.)1()1(yxxyD.)1()1(xyyx44.xyyxey',1则()A.yyxee1B.1yyxeeC.yyxee11D.yex)1(学研教育—浙江专升本高数一元函数微分学53题及答案45.设xxgexfxsin)(,)(,则)]('[xgf()A.xesinB.xecosC.xecosD.xesin46.设xxgexfxcos)(,)(,则)]('[xgfA.xesinB.xecosC.xecosD.xesin47.设)(),(xttfy都可微,则dyA.dttf)('B.)('xdxC.)('tf)('xdtD.)('tfdx48.设,2sinxey则dy()A.xdex2sinB.xdex2sinsin2C.xxdexsin2sin2sinD.xdexsin2sin49.若函数)(xfy有dyxxxxf处的微分该函数在时则当00,0,21)('是()A.与x等价的无穷小量B.与x同阶的无穷小量C.比x低阶的无穷小量D.比x高阶的无穷小量50.给微分式21xxdx,下面凑微分正确的是()A.221)1(xxdB.221)1(xxdC.2212)1(xxdD.2212)1(xxd51.下面等式正确的有()A.)(sinsinxxxxededxeeB.)(1xddxxC.)(222xdedxxexxD.)(cossincoscosxdexdxexx52.设)(sinxfy,则dy()A.dxxf)(sin'B.xxfcos)(sin'C.xdxxfcos)(sin'D.xdxxfcos)(sin'53.设,2sinxey则dyA.xdex2sinB.xdex2sinsin2C.xxdexsin2sin2sinD.xdexsin2sin学研教育—浙江专升本高数一元函数微分学53题及答案答案1.D2.C解:ecosesinxxyxx,(0)101y.选C.3.C解:xxgcos)(',所以xexgfcos)]('[,故选C.4.解:hxfhxfh)()21(lim0001)('21)21(21)()21(lim0000xfhxfhxfh,选C5.解:)('2])()()()([lim)()(lim00afxafxafxafxafxxafxafxx,选B6.解:因为hhfhfh)2()2(lim0hfhfh)2()2([lim0])2()2(hfhf=)2('2f,故选A7.解:)0('f6)3)(2)(1(lim)0()(lim00xxxxxxfxfxx,故选B8.解:因为hhfhfh)()(lim0hfhfh)0()([lim0])0()(hfhf=)0('2f,故选C9.解:因为0limh)(')()h-x(000xfhxff,故选B10.解:因为hfhfh)1()21(lim021)1('222)1()21(lim0fhfhfh)(,故选D11.解:222242)('',2)('xxxexexfxexf,2)0(''f选C12.解:选B13.解:01282829.....axa