8.5分布列与其他知识的综合运用(精练)1.(2023·贵州贵阳·校联考三模)为了“让广大青少年充分认识到毒品的危害性,切实提升青少年识毒防毒拒毒意识”,我市组织开展青少年禁毒知识竞赛,团员小明每天自觉登录“禁毒知识竞赛APP”,参加各种学习活动,同时热衷于参与四人赛.每局四人赛是由网络随机匹配四人进行比赛,每题回答正确得20分,第1个达到100分的比赛者获得第1名,赢得该局比赛,该局比赛结束.每天的四人赛共有20局,前2局是有效局,根据得分情况获得相应名次,从而得到相应的学习积分,第1局获得第1名的得3分,获得第2、3名的得2分,获得第4名的得1分;第2局获得第1名的得2分,获得第2、3、4名的得1分;后18局是无效局,无论获得什么名次,均不能获得学习积分.经统计,小明每天在第1局四人赛中获得3分、2分、1分的概率分别为14,12,14,在第2局四人赛中获得2分、1分的概率分别为14,34.(1)设小明每天获得的得分为X,求X的分布列和数学期望;(2)若小明每天赛完20局,设小明在每局四人赛中获得第1名从而赢得该局比赛的概率为14,每局是否赢得比赛相互独立,请问在每天的20局四人赛中,小明赢得多少局的比赛概率最大?2.(2023·江苏南京·南京市第九中学校考模拟预测)某种疾病可分为A,B两种类型,为了解该疾病的类型与患者性别是否相关,在某地区随机抽取了若干名该疾病的患者进行调查,发现女性患者人数是男性患者的2倍,男性患A型疾病的人数占男性患者的56,女性患A型疾病的人数占女性患者的13.A型病B型病合计男女合计(1)填写22列联表,若本次调查得出“在犯错误的概率不超过0.005的前提下认为‘所患疾病的类型’与‘性别’有关”的结论,求被调查的男性患者至少有多少人?(2)某团队进行预防A型疾病的疫苗的研发试验,试验期间至多安排2个周期接种疫苗,每人每个周期接种3次,每次接种费用为0mm元.该团队研发的疫苗每次接种后产生抗体的概率为01pp,如果一个周期内至少2次出现抗体,则该周期结束后终止试验,否则进入第二个周期.若23p,试验人数为1000人,试估计该试验用于接种疫苗的总费用.22nadbcKabcdacbd,20PKk0.100.050.010.0050.0010k2.7063.8416.6357.87910.8283.(2023·贵州毕节·校考模拟预测)随着人们收入水平的提高,特色化、差异化农产品的消费需求快速增长,精品农产品获得广大消费者的认可.某精品水果种植大户在水果采摘后,一般先分拣出单个重量不达标的水果,再按重量进行分类装箱.现从同批采摘、分拣后堆积的水果堆中随机抽取了30个水果进行称重(为方便称重,按5克为一级进行分级),统计对应的水果重量,得柱状图如下.(1)估计该批采摘的水果的单个水果的平均重量(精确到整数位);(2)在样本内,从重量不低于80克的水果中,随机选取2个,记其中选取到水果重量不低于90克的个数为X,求X的分布列和数学期望;(3)用这个样本的频率分布估计总体分布,将频率视为概率.从采摘的水果堆中随机选取n个水果,若要求其中至少有一个水果的重量不低于80克的概率不低于90%,求n的最小值.4.(2023·福建福州·福建省福州第一中学校考模拟预测)某知识测试的题目均为多项选择题,每道多项选择题有A,B,C,D这4个选项,4个选项中仅有两个或三个为正确选项.题目得分规则为:全部选对的得5分,部分选对的得2分,有选错的得0分.已知测试过程中随机地从四个选项中作选择,每个选项是否为正确选项相互独立.若第一题正确选项为两个的概率为13,并且规定若第1,2,,1iin题正确选项为两个,则第1i+题正确选项为两个的概率为13;第1,2,,1iin题正确选项为三个,则第1i+题正确选项为三个的概率为13.(1)若第二题只选了“C”一个选项,求第二题得分的分布列及期望;(2)求第n题正确选项为两个的概率;(3)若第n题只选择B、C两个选项,设Y表示第n题得分,求证:1718EY.5(2024·江西·校联考模拟预测)近年来,随着智能手机的普及,网络购物、直播带货、网上买菜等新业态迅速进入了我们的生活,改变了我们的生活方式现将一周网上买菜次数超过3次的市民认定为“喜欢网上买菜”,不超过3次甚至从不在网上买菜的市民认定为“不喜欢网上买菜”.某市M社区为了解该社区市民网上买菜情况,随机抽取了该社区100名市民,得到的统计数据如下表所示:喜欢网上买菜不喜欢网上买菜合计年龄不超过45岁的市民401050年龄超过45岁的市民203050合计6040100(1)是否有0099.9的把握认为M社区的市民是否喜欢网上买菜与年龄有关?(2)M社区的市民张无忌周一、二均在网上买菜,且周一从A,B两个买菜平台随机选择其中一个下单买菜.如果周一选择A平台买菜,那么周二选择入平台买菜的概率45;如果周一选择B平台买菜,那么周二选择入平台买菜的概率为13,求张无忌周二选择B平台买菜的概率;(3)用频率估计概率,现从M社区市民中随机抽取20名市民,记其中喜欢网上买菜的市民人数为X事件“Xk”的概率为PXk,求使PXk取得最大值的k的值.参考公式:22nadbcKabcdacbd,其中nabcd.20PKk0.10.050.010.0050.0010k2.7063.8416.6357.87910.8286.(2023·辽宁本溪·本溪高中校考模拟预测)某疫苗生产单位通过验血的方式检验某种疫苗产生抗体情况,现有*nnN份血液样本(数量足够大),有以下两种检验方式:方式一:逐份检验,需要检验n次;方式二:混合检验,将其中k(*kN且2k)份血液样本混合检验,若混合血样无抗体,说明这k份血液样本全无抗体,只需检验1次;若混合血样有抗体,为了明确具体哪份血液样本有抗体,需要对每份血液样本再分别化验一次,检验总次数为(1)k次.假设每份样本的检验结果相互独立,每份样本有抗体的概率均为(01)pp.(1)现有7份不同的血液样本,其中只有3份血液样本有抗体,采用逐份检验方式,求恰好经过4次检验就能把有抗体的血液样本全部检验出来的概率;(2)现取其中k(*kN且2k)份血液样本,记采用逐份检验方式,样本需要检验的总次数为1;采用混合检验方式,样本需要检验的总次数为2.①若12EE,求P关于k的函数关系式()pfk;②已知181ep,以检验总次数的期望为依据,讨论采用何种检验方式更好?参考数据:ln20.693,ln253.219,ln263.258,ln273.296,ln283.332.7.(2023·江苏南京·南京市第一中学校考模拟预测)为了宣传航空科普知识,某校组织了航空知识竞赛活动.活动规定初赛需要从8道备选题中随机抽取4道题目进行作答.假设在8道备选题中,小明正确完成每道题的概率都是34且每道题正确完成与否互不影响,小宇能正确完成其中6道题且另外2道题不能完成.(1)求小明至少正确完成其中3道题的概率;(2)设随机变量X表示小宇正确完成题目的个数,求X的分布列及数学期望;(3)现规定至少完成其中3道题才能进入决赛,请你根据所学概率知识,判断小明和小宇两人中选择谁去参加市级比赛(活动规则不变)会更好,并说明理由.8.(2023·四川遂宁·射洪中学校考模拟预测)“五一黄金周”期间,某商场为吸引顾客,增加顾客流量,推出购物促销优惠活动,具体优惠方案有两种:方案一:消费金额不满300元,不予优惠;消费金额满300元减60元;方案二:消费金额满300元,可参加一次抽奖活动,活动规则为:从装有3个红球和3个白球共6个球的盒子中任取3个球(这些小球除颜色不同其余均相同),抽奖者根据抽到的红球个数不同将享受不同的优惠折扣,具体优惠如下:抽到的红球个数0123优惠折扣无折扣九折八折七折(1)现有甲乙两位顾客各获得一次抽奖活动,求这两位顾客恰好有一人获得八折优惠折扣的概率;(2)若李女士在该商场消费金额为x元(300x),请以李女士实付金额的期望为决策依据,对李女士选择何种优惠方案提出建议.9.(2023·重庆沙坪坝·重庆一中校考模拟预测)某学校常年开设某课程,今年该校在某年级开设的该课程共有若干个班,由若干位不同的老师授课,其中某位老师班上的评分标准如下:每位同学该课程的分数(满分100分)由两部分组成,一部分为“平时分”,学期内共有15次考勤,每次出勤计2分,另一部分为“期末分”,是由期末考试的卷面成绩(满分100分)按照卷面成绩比期末分10:7的比例折算而来.如,一名同学出勤14次,期末考试的卷面成绩为90分,则该同学该课程的最终评分为:7142909110(分).(1)一同学期末考试的卷面成绩为46分,假设该同学每次考勤时出勤的概率均为0.9且互相独立,求该同学的最终评分及格(即大于等于60分)的概率P(结果保留三位小数);(2)经过统计,教务处公布今年该课程的该年级平均分约为82.15,标准差约为7.23,且学生成绩X近似满足正态分布282.15,7.23N.据此,该老师估计该年级几乎没有需要重修(即分数未达到60分)的学生,请用所学知识解释老师的这一观点;(3)泊松分布可以用来描述某些小概率事件的发生.若随机变量X服从参数为的泊松分布(记作~XP),则e!kPXkkkZ,其中e为自然对数的底数.根据往年的数据,我们认为该课程每年每个班级需要重修的学生数量S近似服从泊松分布,假设~0.1SP,证明每年每个班级出现多于一名需要重修该课程的学生的概率低于百分之一.参考数据:110.90.3138,130.90.2542,150.90.2059,若2~,XN,则0.6827PX,220.9545PX,330.9973PX.10.(2023·甘肃张掖·高台县第一中学校考模拟预测)杭州2022年亚运会将于2023年9月23日至10月8日在我国杭州举办.为迎接这一体育盛会,浙江某大学组织大学生举办了一次主题为“喜迎杭州亚运,当好东道主”的亚运知识竞赛,并从所有参赛大学生中随机抽取了200人,统计他们的竞赛成绩m(满分100分,已知每名参赛大学生至少得60分),制成了如下所示的频数分布表:成绩/分[60,70)[70,80)[80,90)[90,100]人数60705020(1)规定成绩不低于85分为“优秀”,成绩低于85分为“非优秀”,这200名参赛大学生的成绩的情况统计如下表:分类优秀非优秀总计男生3070100女生2080100判断是否有95%的把握认为竞赛成绩优秀与性别有关;(2)经统计,用于学习亚运知识的时间(单位:时)与成绩(单位:分)之间的关系近似为线性相关关系,对部分参赛大学生用于学习亚运知识时间x与知识竞赛成绩y进行数据收集,如下表:x/时89111215y/分6763808085求变量y关于x的线性回归方程ˆˆˆybxa;(3)A市某企业赞助了这次知识竞赛,给予每位参赛大学生一定的奖励,奖励方案有以下两种:方案一:按竞赛成绩m进行分类奖励,当80m时,奖励100元;当8090m时,奖励200元;当90m时,奖励300元.方案二:利用抽奖的方式获得奖金,其中竞赛成绩低于样本中位数的只有1次抽奖机会,竞赛成绩不低于样本中位数的则有2次抽奖机会,其中每次抽奖抽中100元现金红包的概率均为34,抽中200元现金红包的概率均为14,且两次抽奖结果相互独立.若每名参赛大学生只能选择一种奖励方案,试用样本的频率估计总体的概率,从数学期望的角度分析,每名参赛大学生选择哪种奖励方案更有利.附:22()nadbcKabcdacbd(其中)nabcd;20PKk0.100.050.0250.0100