专题10数列不等式的放缩问题目录01先求和后放缩...................................................................................................................................102裂项放缩..........................................................................................................................................503等比放缩..........................................................................................................................................9041()()niiafn型不等式的证明...................................................................................................11051()()niiafn型不等式的证明..................................................................................................20061()niiab型不等式的证明.........................................................................................................24071()niiab型不等式的证明........................................................................................................3201先求和后放缩1.(2023·山东菏泽·高三菏泽一中校考阶段练习)已知数列na的前n项和为nS,且1214aa,,______请在11(322)32nnnnnnSSSnaS①;②是公差为1的等差数列;1nnaa③是公比为3的等比数列,这三个条件中任选一个补充在上面题干中,并解答下面问题.(1)求na的通项公式;(2)在na与1na之间插入n个实数,使这2n个数依次组成公差为nd的等差数列,数列1nd的前n项和nT,证明:5.4nT【解析】(1)若选①:当2n时,1132nnnnSSS,所以113nnnnnSSSS,故13(2)nnnaan,因为121413aa,所以*1)3(Nnnnaan,则2n时,12111221333nnnnnnaaaaaa,,,累加得112113(31)3332nnnnaa,故3122nnan,,当1n时,13112a满足上式,故312nna.若选②,数列32nnaS是公差为1的等差数列,首项为111321aSa,故32nnaSn,则113212nnaSnn,两式相减得1312nnaan,则1113()22nnaa,则111(231)2nnaa,即3122nnan,当1n时,13112a满足上式,故312nna.若选③,数列1nnaa是公比为3的等比数列,首项为213aa,故13nnnaa,则2n时,12111221333nnnnnnaaaaaa,,,累加得112113(31)3332nnnnaa,故3122nnan,当1n时,13112a满足上式,故312nna.(2)证明:由于113131322111nnnnnnaadnnn,所以113nnnd所以231234133333nnnnnT①,故234112341333333nnnnnT②,①②,得231221111333333nnnnT1111()115253313366313nnnnn,即52554434nnnT.2.(2023·吉林白城·高三校考阶段练习)已知公差不为零的等差数列na的前n项和为2,3nSa,且137,,aaa成等比数列.(1)求na的通项公式;(2)若121nnnbSa,数列nb的前n项和为nT,证明:34nT.【解析】(1)设na的公差为0dd,因为137,,aaa成等比数列,所以2317aaa,即211126adaad,因为0d,所以12ad,又23a,所以123addd,所以11,2da,所以11211naandnn.(2)由(1)得,221322nnnnnS,所以1111121222nnnbSannnn,所以1111111111112322423522nTnn111111111311123243522212nnnn,又110,012nn,所以34nT.3.(2023·天津·高三校联考期中)已知数列na的前n项和22nnnS,数列nb满足:13b,*121Nnnbbn.(1)证明:1nb是等比数列;(2)设数列{}nc的前n项和为nT,且2211(1)log1nnnnnacab,求nT(3)设数列nd满足:1222*2,21,N,2nnnnnnankaadkankb.证明:2194nkkd.【解析】(1)由121nnbb,得1121nnbb,所以1nb是以2为首项,2为公比的等比数列,即21nnb.(2)当1n时,有111aS,当2n时,2211122nnnnnnnaSSn,显然11a也满足,故nan,结合21nnb,所以2111nnncnn=1111nnn,故11111111111112233411nnnnTnnn.(3)当n为奇数时,22221111(2)4(2)nndnnnn,135212222211111114335(21)(21)nddddnn211114(21)4n,当n为偶数时,22212nnnnnd,246224201148412222444nnnnndddd,设01112444nnnQ,则121112144444nnnnnQ,两式相减得12111311141...144444414nnnnnnnQ,得116341169949nnnQ,所以2462169ndddd,所以2119244nkkd,得证.4.(2023·陕西西安·高三西安市第三中学校考期中)设各项均为正数的数列na的前n项和为nS,满足431nnnSaa.(1)求数列na的通项公式;(2)记13nnnab,数列nb的前n项和为nT.证明:对一切正整数n,6nT.【解析】(1)因为431nnnSaa,即2423nnnSaa,当1n时2111423Saa,解得13a或11a(舍去),当2n时2111423nnnSaa,所以22111344223nnnnnnSSaaaa,即2211422nnnnnaaaaa,即2211220nnnnaaaa,则1120nnnnaaaa,因为0na,所以12nnaa,所以数列na是首项为3,公差为2的等差数列,所以数列na的通项公式是21nan(2)由(1)可得112133nnnnanb,所以0121357213333nnnT,12313572133333nnnT,所以01212322221333333nnnnT1211213331313nnn2443nn,所以1263nnnT,因为1203nn,所以12663nnnT.02裂项放缩5.(2023·贵州黔东南·高三天柱民族中学校联考阶段练习)已知正项数列na的前n项和为1,1nSa,且12nnnaSSn.(1)求na;(2)设1nnbS,数列nb的前n项和为nT,证明:74nT.【解析】(1)当2n时,11nnnnnaSSSS,即111nnnnnnSSSSSS,由数列为正项数列可知,11nnSS,又111Sa,即数列nS是首项为1,公差为1的等差数列,即nSn,则11nSn,2n当2n时,121nnnaSSn,当1n时,12111a成立,所以21nan(2)由(1)可知,2nSn,则21nbn,当2n时,2111111nbnnnnn1714T,成立,221571244T,成立,当3n时,22211111111111...1...23423341nTnnn,即11171714244nTnn.综上可知,74nT,得证.6.(2023·湖南常德·高三临澧县第一中学校考阶段练习)已知数列na为等差数列,数列nb为等比数列,且47a,11a,2132aba,23324ababnN.(1)求na,nb的通项公式;(2)已知2,34,nnnnnnnabncabnaa为奇数为偶数,求数列nc的前2n项和2nT;(3)求证:11212log3niiiab.【解析】(1)设等差数列na的公差为d,等比数列nb的公比为q,由47a,11a得41241aad,所以21nan,由2132aba,23324ababnN.得33219320bbb,所以38b,24b,故122bq,所以2nnb.(2)当n是奇数时,212nncn,当n是偶数时,26722221232321nnnnncnnnn,则13521211125292432nnkkcn①357212114125292432nnkkcn②①-②得:35212121132424242432nnnkkcn即352121211324222432nnnkkcn