专题07 函数与导数常考压轴解答题(练习)(解析版)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

专题07函数与导数常考压轴解答题目录01含参数函数单调性讨论...................................................................................................................202导数与数列不等式的综合问题........................................................................................................303双变量问题......................................................................................................................................704证明不等式....................................................................................................................................1105极最值问题....................................................................................................................................1406零点问题........................................................................................................................................1807不等式恒成立问题.........................................................................................................................2508极值点偏移问题与拐点偏移问题..................................................................................................3009利用导数解决一类整数问题..........................................................................................................3810导数中的同构问题.........................................................................................................................4111洛必达法则....................................................................................................................................4512导数与三角函数结合问题..............................................................................................................4801含参数函数单调性讨论1.(2023·全国·高三专题练习)已知函数221ln02fxaxxaxx.讨论函数fx的单调性.【解析】由已知可得,221lnxaxaxxfx,定义域为0,,所以2322afxaxxx32322axaxxx2312xaxx.(ⅰ)当0a时,321xfxx.当01x时,有3210xfxx,fx在0,1上单调递增;当1x时,有3210xfxx,fx在1,上单调递减.(ⅱ)当02a时,21a,解23120xaxfxx,可得1x,或2xa(舍去负值),且21a.解()0fx¢可得,01x或2xa,所以fx在0,1上单调递增,在2,a上单调递增;解0fx可得,21xa,所以fx在1,2a上单调递减.(ⅲ)当2a时,232110xxfxx在0,上恒成立,所以,fx在0,上单调递增.综上所述,当0a时,fx在0,1上单调递增,在1,上单调递减;当02a时,fx在0,1上单调递增,在1,2a上单调递减,在2,a上单调递增;当2a时,fx在0,上单调递增.2.(2023·全国·高三专题练习)已知函数2212ln,R2afxxaxxa,讨论fx的单调性.【解析】由题设221212221axaxaxxfxaxaxxx且,()0x,当0a时0,fxfx在0,上递减;当0a时,令10fxxa,当10xa时0,fxfx在区间10,a上递减;当1xa时0,fxfx在1,a上递增.所以当0a时,fx的减区间为0,,无增区间;当0a时,fx的增区间为1,a,减区间为10,a.02导数与数列不等式的综合问题3.(2023·广东·高三执信中学校联考期中)设函数lnln1fxaxxm,0a,mR.(1)求函数fx的单调区间;(2)若对任意01a,函数fx均有2个零点,求实数m的取值范围;(3)设nN且2n,证明:2223112312nnnnnnnL.【解析】(1)lnln1fxaxxm的定义域为0,,其中0a,1111axaafxxxxx,当10a,即1a时,()0fx¢恒成立,fx在0,上单调递增.当100aa,即01a时,令0fx解得11aaxaa,在区间0,1aa上0,fxfx单调递增;在区间,1aa上0,fxfx单调递减.综上所述,1a时fx在0,上单调递增;01a时,fx在0,1aa上单调递增,在,1aa上单调递减.(2)由(1)得,01a时,fx在0,1aa上单调递增,在,1aa上单调递减.依题意可得对任意01a,均有lnln10111aaafamaaa恒成立,即1ln1lnlnlnln1111aamaaaaaaa1ln1lnaaaa恒成立,设1ln1ln01gaaaaaa,1111ln1lnlnln11aagaaaaaaaa,令1ln10a解得12a,所以在区间10,2上,0,gaga单调递增,在区间1,12上,0,gaga单调递减,所以11111lnlnln222222gag.所以ln2m.对于函数lnln1ln1axfxaxxmmx当0x和x时,01axx,所以fx,结合零点存在性定理可知,此时fx有两个零点.所以实数m的取值范围是ln2,.(3)要证明2223112312nnnnnnnL,即证明222311231lnln2nnnnnnnL,即证明211lnln22nkknkn,即证明112lnln2nkkknnn,注意到1111112lnlnlnnnnkkkkkkknknknnnnnn11ln1ln1nkkkkknnnn,所以即证明11ln1ln1ln2nkkkkknnnnn,由(2)得1ln1lnln2gaaaaa,即1ln1lnln2aaaa,取,1,2,,1kaknn代入上式,得:1ln1lnln2kkkknnnn,1,2,,1kn,所以11ln1ln11ln2ln2nkkkkknnnnnn,所以2223112312nnnnnnnL.4.(2023·全国·模拟预测)已知函数exxfx.(1)求函数fx在1x处的切线方程;(2)若122nxxx,且*01,2,,,ixinnN,求证:1222ennfxfxfx.【解析】(1)由()exxfx可得1()exxfx,所以fx在1x处的切线斜率10kf,且11ef,故所求切线方程为1ey.(2)设fx在02xaa处的切线斜率为k,由(1)得1()eaakfa,且()eaafa,故()fx在xa处的切线方程为21eeaaaayx,设2102eeeaaxaaxgxxx,则11eeaxaxgx.设11eeaxaxhx,则2exxhx.因为02x,所以0hx,仅在2x时取等号,故hx在0,2上单调递增.列表如下.0,xaxa,2xa0gx0gx0gxgx单调递减极小值0gagx单调递增所以0gx,即21eeeaaxaaxx.令12,,,nxxxx,其中122nxxx,且*01,2,,,ixinnN,则有12111eeexaaxaax,22221eeexaaxaax,…,21eeennnxaaxaax,累加得212121eennaaaaxxxnfxfxfx,即21212eenaaaanfxfxfx,取22ann,即得1222ennfxfxfx,当1n时,122efx显然满足题意,综上可得1222ennfxfxfx.5.(2023·河北张家口·高三校联考阶段练习)已知函数ln2ee,22,Rhxxg

1 / 55
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功