专题03一网打尽指对幂等函数值比较大小问题目录01直接利用单调性...............................................................................................................................102引入媒介值......................................................................................................................................203含变量问题......................................................................................................................................404构造函数..........................................................................................................................................705数形结合........................................................................................................................................1506特殊值法、估算法.........................................................................................................................2007放缩法、同构法.............................................................................................................................2208不定方程........................................................................................................................................3309泰勒展开........................................................................................................................................3701直接利用单调性1.(2023·安徽·高三校联考阶段练习)已知2log3a,4log6b,8log9c,则a、b、c的大小顺序为()A.abcB.acbC.cbaD.bca【答案】C【解析】42log6log6b,又382log9log9c,因为3369,2logyx单调递增,所以cba.故选:C2.(2023·甘肃·模拟预测)三个数231.3,230.3,340.3的大小顺序是()A.231.3340.3230.3B.230.3231.3340.3C.231.3230.3340.3D.340.3231.3230.3【答案】C【解析】由函数23yx在0,上单调递增,则22331.30.3又由于0.3xy在R上单调递减,则23340.30.3故2233341.30.30.3故选:C3.(2023·安徽·高三校联考阶段练习)已知2log3a,3log4b,2c,则a、b、c的大小顺序为()A.abcB.acbC.cbaD.bca【答案】D【解析】由2223log3log9log822a,故ac,因为23log3log42ab,所以2ba,因为2a,所以112a,所以22a,即2bbca故选:D02引入媒介值4.(2023·高三新疆石河子一中校考阶段练习)设0.3222,0.3,log0.3abc,则a,b,c的大小顺序是()A.c<a<bB.c<b<aC.a<c<bD.b<c<a【答案】B【解析】0.30221aQ,20.30.091b,22log0.3log10c;cba.故选:B.5.(2023·辽宁·高三东北育才学校校联考期末)已知2log0.4a,56log5b,1103c,则a,b,c的大小顺序为()A.cbaB.bacC.abcD.cab【答案】A【解析】2log0.40,560log15,11031,所以cba.故选:A6.(2023·浙江嘉兴·高一校联考期中)已知2log2.8a,0.8log2.8b,0.82c试比较a,b,c的大小为()A.bacB.bcaC.cbaD.acb【答案】B【解析】∵22log2.8log21a,0.80.8log2.8log10b,0.800221c,∴bca.故选:B.7.(2023·天津红桥·天津三中校考一模)设0.32a,0.3log2b,20.3c,则三者的大小顺序是()A.abcB.acbC.cbaD.bac【答案】B【解析】因为0.321a,0.3log20b,20.30,1c,所以acb,故选:B.8.(2023·全国·高三校联考阶段练习)已知3log10a,lg27b,3c.则a,b,c的大小顺序为()A.abcB.acbC.cbaD.bca【答案】D【解析】因为33log10log923a,所以ac,01ca又23log10lg273abc,2ccbccaa,所以bca.故选:D9.(2023·浙江嘉兴·高一统考期中)20.320.3,log0.3,2这三个数的大小顺序是()A.20.320.32log0.3B.20.320.3log0.32C.20.32log0.30.32D.0.322log0.320.3【答案】C【解析】因为2000.30.31,22log0.3log10,0.30221,所以20.32log0.30.32,故选:C.10.(2023·新疆阿勒泰·高三阶段练习)a=0.40.6,b=log0.44,c=40.4这三个数的大小顺序是()A.abcB.cbaC.cabD.bac【答案】C【解析】0.60.40.40.4,log40(0,1)1,4abccab,选C.03含变量问题11.(2023·江苏盐城·高一江苏省响水中学校考阶段练习)已知正数,,xyz,满足346xyz,则下列说法不正确的是()A.1112xyzB.346xyzC.3(2)2xyzD.22xyz【答案】B【解析】设3461xyzm,则346log,log,logxmymzm∴111log3,log4,log6mmmxyz对A:1111log3log4log3log2log622mmmmmxyz,A正确;对B:由题意可得:1131log333mxx,同理可得:114,6log4log646mmyz∵log3log44log33log4log81log640341212mmmmmmlog4log63log42log6log64log360461212mmmmmm∴log3log4log60346mmm,则346xyz,B错误;对C:∵3466logloglg6lg63lg21lg332logloglg3lg42lg32lg22mmxyxyzzzmm∴3(2)2xyz,C正确;对D:324266lg2lg3logloglg6lg6lg3lg2lo1222lg2lg3gloglg3lglg3242lgmmxyzmm∴22xyz,D正确;故选:B.12.(2023·广西·统考模拟预测)已知正数,,xyz满足e,xy且,,xyz成等比数列,则,,xyz的大小关系为()A.xyzB.yxzC.xzyD.zyx【答案】D【解析】令e,0xfxyxxx,则e1xfx,当0x时,e10xfx,fx单调递增,所以0=ee=1xfxx,所以exx,故yx,因为正数,,xyz成等比数列,所以2yxz即2exxz,故2exzx,所以2ee1exxxzyxx,故zy,综上所述,zyx,故选:D13.(2023·湖南岳阳·高三统考阶段练习)已知正数,,abc,满足lncabbeca,则,,abc的大小关系为()A.abcB.acbC.bcaD.cba【答案】D【解析】,,abc均为正数,因为lnabca,所以lncb,设ln0cabbecatt,则,=,lnlnectttabcbbb,令ln0fxxxx,则111xfxxx,当01x时()0fx¢,fx单调递增,当1x时0fx,fx单调递减,所以110fxf,即lnxx,所以lnbb,可得ab,又lncb得cb,综上,cba.故选:D.14.(2023·湖北·高三校联考开学考试)已知,,abc均为不等于1的正实数,且lnln,lnlncababc,则,,abc的大小关系是()A.cabB.bcaC.abcD.acb【答案】D【解析】lnln,lnlncababc且a、b、c均为不等于1的正实数,则lnc与lnb同号,lnc与lna同号,从而lna、lnb、lnc同号.①若a、b、0,1c,则lna、lnb、lnc均为负数,lnlnlnabcc,可得ac,lnlnlncabb,可得cb,此时acb;②若a、b、1,c,则lna、lnb、lnc均为正数,lnlnlnabcc,可得ac,lnlnlncabb,可得cb,此时acb.综上所述,acb.故选:D.15.(2023·全国·高三专题练习)已知实数a,b,c满足lnlnln0eaabcbc,则a,b,c的大小关系为()A.bacB.cbaC.abcD.cab【答案】C【解析】由题意知0,0,0abc,由lnlnln0aabcebc,得01,01,1abc,设ln()(0)xfxxx,则21ln()xfxx,当01x时,()0,()fxfx单调递增,因1xex,当且仅当0x时取等号,故(01)aeaa,又ln0a,所以lnlnaaaea,故lnlnbaba,∴()()fbfa,则ba,即有01abc,故abc.故选:C.04构造函数16.(2023·福建莆田·高二统考期末)设1ea,11ln22b,444ln4ec,则()A.bacB.bcaC.cabD.cba【答案】D【解析】1lneeea,11ln2ln4ln2224b,444eln44ln44ee