2010年·暑假.三年级.第3讲.重叠问题教师版page1of141.了解容斥原理二量重叠和三量重叠的内容;2.掌握容斥原理的在组合计数等各个方面的应用.知识点说明一、两量重叠问题在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:ABABAB(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A表示小圆部分,B表示大圆部分,C表示大圆与小圆的公共部分,记为:AB,即阴影面积.图示如下:A表示小圆部分,B表示大圆部分,C表示大圆与小圆的公共部分,记为:AB,即阴影面积.包含与排除原理告诉我们,要计算两个集合AB、的并集AB的元素的个数,可分以下两步进行:第一步:分别计算集合AB、的元素个数,然后加起来,即先求AB(意思是把AB、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去CAB(意思是“排除”了重复计算的元素个数).二、三量重叠问题A类、B类与C类元素个数的总和A类元素的个数B类元素个数C类元素个数既是A类又是B类的元素个数既是B类又是C类的元素个数既是A类又是C类的元素个数同时是A类、B类、C类的元素个数.用符号表示为:ABCABCABBCACABC.图示如下:知识精讲教学目标7-7容斥原理1.先包含——AB重叠部分AB计算了2次,多加了1次;2.再排除——ABAB把多加了1次的重叠部分AB减去.2010年·暑假.三年级.第3讲.重叠问题教师版page2of14在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.板块一、两量重叠问题【例1】两张长4厘米,宽2厘米的长方形纸摆放成如图所示形状.把它放在桌面上,覆盖面积有多少平方厘米?图32厘米4厘米【解析】两个长方形如图摆放时出现了重叠(见图中的阴影部分),重叠部分恰好是边长为2厘米的正方形,如果利用两个42的长方形面积之和来计算被覆盖桌面的面积,那么重叠部分在两个长方形面积中各被计算了一次,而实际上这部分只需计算一次就可以了.所以,被覆盖面积长方形面积之和-重叠部分.于是,被覆盖面积4222212(平方厘米).【巩固】把长38厘米和53厘米的两根铁条焊接成一根铁条.已知焊接部分长4厘米,焊接后这根铁条有多长?【解析】因为焊接部分为两根铁条的重合部分,所以,由包含排除法知,焊接后这根铁条长3853487(厘米).【巩固】把长23厘米和37厘米的两根铁条焊接成一根铁条.已知焊接部分长3厘米,焊接后这根铁条有多长?【解析】焊接部分为两根铁条的重合部分,由包含排除法知,焊接后这根铁条长:2337357(厘米).【例2】实验小学四年级二班,参加语文兴趣小组的有28人,参加数学兴趣小组的有29人,有12人两个小组都参加.这个班有多少人参加了语文或数学兴趣小组?【解析】如图所示,A圆表示参加语文兴趣小组的人,B圆表示参加数学兴趣小组的人,A与B重合的部分C(阴影部分)表示同时参加两个小组的人.图中例题精讲图中小圆表示A的元素的个数,中圆表示B的元素的个数,大圆表示C的元素的个数.1.先包含:ABC重叠部分AB、BC、CA重叠了2次,多加了1次.2.再排除:ABCABBCAC重叠部分ABC重叠了3次,但是在进行ABCABBCAC计算时都被减掉了.3.再包含:ABCABBCACABC.CBA2010年·暑假.三年级.第3讲.重叠问题教师版page3of14A圆不含阴影的部分表示只参加语文兴趣小组未参加数学兴趣小组的人,有281216(人);图中B圆不含阴影的部分表示只参加数学兴趣小组未参加语文兴趣小组的人,有291217(人).方法一:由此得到参加语文或数学兴趣小组的有:16121745(人).方法二:根据包含排除法,直接可得:参加语文或数学兴趣小组的人参加语文兴趣小组的人参加数学兴趣小组的人两个小组都参加的人,即:28291245(人).【巩固】芳草地小学四年级有58人学钢琴,43人学画画,37人既学钢琴又学画画,问只学钢琴和只学画画的分别有多少人?【解析】解包含与排除题,画图是一种很直观、简捷的方法,可以帮助解决问题,画图时注意把不同的对象与不同的区域对应清楚.建议教师帮助学生画图分析,清楚的分析每一部分的含义.如图,A圆表示学画画的人,B圆表示学钢琴的人,C表示既学钢琴又学画画的人,图中A圆不含阴影的部分表示只学画画的人,有:43376(人),图中B圆不含阴影的部分表示只学钢琴的人,有:583721(人).【例3】一个班48人,完成作业的情况有三种:一种是完成语文作业没完成数学作业;一种是完成数学作业没完成语文作业;一种是语文、数学作业都完成了.已知做完语文作业的有37人;做完数学作业的有42人.这些人中语文、数学作业都完成的有多少人?【解析】不妨用下图来表示:线段AB表示全班人数,线段AC表示做完语文作业的人数,线段DB表示做完数学作业的人数,重叠部分DC则表示语文、数学都做完的人数.根据题意,做完语文作业的有37人,即37AC.做完数学作业的有42人,即42DB.374279ACDB(人)①48AB(人)②①式减②式,就有794831DC(人)所以,数学、语文作业都做完的有31人.【巩固】四年级科技活动组共有63人.在一次剪贴汽车模型和装配飞机模型的定时科技活动比赛中,老师到时清点发现:剪贴好一辆汽车模型的同学有42人,装配好一架飞机模型的同学有34人.每个同学都至少完成了一项活动.问:同时完成这两项活动的同学有多少人?【解析】因423476,7663,所以必有人同时完成了这两项活动.由于每个同学都至少完成了一项活动,根据包含排除法知,4234(完成了两项活动的人数)全组人数,即76(完成了两项活动的人数)63.由减法运算法则知,完成两项活动的人数为766313(人).也可画图分析.【巩固】实验二校一个歌舞表演队里,能表演独唱的有10人,能表演跳舞的有18人,两种都能表演的有7人.这个表演队共有多少人能登台表演歌舞?【解析】根据包含排除法,这个表演队能登台表演歌舞的人数为:1018721(人).【巩固】某班组织象棋和军棋比赛,参加象棋比赛的有32人,参加军棋比赛的有28人,有18人两项比赛CBA2010年·暑假.三年级.第3讲.重叠问题教师版page4of14都参加了,这个班参加棋类比赛的共有多少人?【解析】如图,A圆表示参加象棋比赛的人,B圆表示参加军棋比赛的人,A与B重合的部分表示同时参加两项比赛的人.图中A圆不含阴影的部分表示只参加象棋比赛不参加军棋比赛的人,有321814(人);图中B圆不含阴影的部分表示只参加军棋比赛不参加象棋比赛的人,有281810(人).由此得到参加棋类比赛的人有14181042(人).或者根据包含排除法直接得:32281842(人).【例4】(第二届小学迎春杯数学竞赛)有100位旅客,其中有10人既不懂英语又不懂俄语,有75人懂英语,83人懂俄语.问既懂英语又懂俄语的有多少人?【解析】方法一:在100人中懂英语或俄语的有:1001090(人).又因为有75人懂英语,所以只懂俄语的有:907515(人).从83位懂俄语的旅客中除去只懂俄语的人,剩下的831568(人)就是既懂英语又懂俄语的旅客.方法二:学会把公式进行适当的变换,由包含与排除原理,得:75839068ABABAB(人).【巩固】名学生参47加数学和语文考试,其中语文得分95分以上的14人,数学得分95分以上的21人,两门都不在95分以上的有22人.问:两门都在95分以上的有多少人?【解析】如图,用长方形表示这47名学生,A圆表示语文得分95分以上的人数,B圆表示数学得95分以上的人数,A与B重合的部分表示两门都在95分以上的人数,长方形内两圆外的部分表示两门都不在95分以上的人数.由图中可以看出,全体人数是至少一门在95分以上的人数与两门都不在95分以上的人数之和,则至少一门在95分以上的人数为:472225(人).根据包含排除法,两门都在95分以上的人数为:14212510(人).【巩固】某班共有46人,参加美术小组的有12人,参加音乐小组的有23人,有5人两个小组都参加了.这个班既没参加美术小组也没参加音乐小组的有多少人?【解析】已知全班总人数,从反面思考,找出参加美术或音乐小组的人数,只需用全班总人数减去这个人数,就得到既没参加美术小组也没参加音乐小组的人数.根据包含排除法知,该班至少参加了一个小组的总人数为1223530(人).所以,该班未参加美术或音乐小组的人数是463016(人).【巩固】四年级一班有45人,其中26人参加了数学竞赛,22人参加了作文比赛,12人两项比赛都参加了.一班有多少人两项比赛都没有参加?【解析】由包含排除法可知,至少参加一项比赛的人数是:26221236(人),所以,两项比赛都没有参加的人数为:45369(人).【巩固】某次英语考试由两部分组成,结果全班有12人得满分,第一部分有25人做对,第二部分有19人有错,问两部分都有错的有多少人?【解析】如图,用长方形表示参加考试的人数,A圆表示第一部分对的人数.B圆表示第二部分对的人数,长方形中阴影部分表示两部分都有错的人数.已知第一部分对的有25人,全对的有12人,可知只对第一部分的有:251213(人).又因为第二部分有19人有错,其中第一部分对第两门都不在95分以上的数学95分以上的语文95分以上的两门95分以上的AB两部分全对的两部分都有错的只做对第二部分的只做对第一部分的两项比赛都参加的只参加军棋比赛的只参加象棋比赛的BA2010年·暑假.三年级.第3讲.重叠问题教师版page5of14二部分有错的有13人,那么余下的19136(人)必是第一部分和第二部分均有错的,两部分都有错的有6人.【巩固】对全班同学调查发现,会游泳的有20人,会打篮球的有25人.两项都会的有10人,两项都不会的有9人.这个班一共有多少人?【解析】如图,用长方形表示全班人数,A圆表示会游泳的人数,B圆表示会打篮球的人数,长方形中阴影部分表示两项都不会的人数.由图中可以看出,全班人数至少会一项的人数两项都不会的人数,至少会一项的人数为:20251035(人),全班人数为:35944(人).【例5】在46人参加的采摘活动中,只采了樱桃的有18人,既采了樱桃又采了杏的有7人,既没采樱桃又没采杏的有6人,问:只采了杏的有多少人?【解析】如图,用长方形表示全体采摘人员46人,A圆表示采了樱桃的人数,B圆表示采了杏的人数.长方形中阴影部分表示既没采樱桃又没采杏的人数.由图中可以看出,全体人员是至少采了一种的人数与两种都没采的人数之和,则至少采了一种的人数为:46640(人),而至少采了一种的人数只采了樱桃的人数两种都采了的人数只采了杏的人数,所以,只采了杏的人数为:4018715(人).【例6】甲、乙、丙三个小组学雷锋,为学校擦玻璃,其中68块玻璃不是甲组擦的,52块玻璃不是乙组擦的,且甲组与乙组一共擦了60块玻璃.那么,甲、乙、丙三个小组各擦了多少块玻璃?【解析】68块玻璃不是甲组擦的,说明这68块玻璃是乙、丙两组擦的;52块玻璃不是乙组擦的,说明这52块玻璃是甲、丙两组擦的.如图,用圆A表示乙、丙两组擦的68块玻璃,B圆表示甲、丙两组擦的52块玻璃.因甲乙两组共擦了60块玻璃,那么68526060(块),这是两个丙组擦的玻璃数.60230(块).丙组擦了30块玻璃.乙组擦了:683038(块)玻璃,甲组