第47练 随机抽样(精练:基础+重难点)【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)第47练随机抽样(精练)【A组在基础中考查功底】一、单选题1.某校高一学生550人,高二学生500人,高三学生450人,现有分层抽样,在高三抽取了18人,则高二应抽取的人数为()A.24B.22C.20D.18【答案】C【分析】根据分层抽样的知识求得正确答案.【详解】设高二应抽取的人数为x人,则18450500x,解得=20x人.故选:C2.现要完成下列2项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查;②东方中学共有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.较为合理的抽样方法是()A.①抽签法,②分层随机抽样B.①随机数法,②分层随机抽样C.①随机数法,②抽签法D.①抽签法,②随机数法【答案】A【分析】根据已知条件,结合抽签法和分层随机抽样的定义,即可求解【详解】①总体较少,宜用抽签法;②各层间差异明显,宜用分层随机抽样.故选:A.3.某班数学兴趣小组组织了线上“统计”全章知识的学习心得交流:甲同学说:“在频率分布直方图中,各小长方形的面积的总和小于1”;乙同学说:“简单随机抽样因为抽样的随机性,可能会出现比较‘极端’的样本.相对而言,分层随机抽样的样本平均数波动幅度更均匀”;丙同学说:“扇形图主要用于直观描述各类数据占总数的比例”;丁同学说:“标准差越大,数据的离散程度越小”.以上四人中,观点正确的同学个数为()A.1B.2C.3D.4【答案】B【分析】利用统计的相关知识可逐个判断各同学观点的正误即可.【详解】“在频率分布直方图中,各小长方形的面积的总和等于1”,故甲的观点错误;“简单随机抽样因为抽样的随机性,可能会出现比较‘极端’的样本,相对而言,分层随机抽样的样本平均数波动幅度更均匀”,故乙的观点正确;“扇形图主要用于直观描述各类数据占总数的比例”,故丙的观点正确;“标准差越大,数据的离散程度越大”,故丁的观点错误.故选:B4.某校要从高一、高二、高三共2023名学生中选取50名组成志愿团,若先用简单随机抽样的方法从2023名学生中剔除23名,再从剩下的2000名学生中按分层随机抽样的方法抽取50名,则每名学生入选的可能性()A.都相等且为502023B.都相等且为140C.不完全相等D.均不相等【答案】A【分析】根据简单随机抽样和分层抽样都是等可能抽样得到答案.【详解】根据简单随机抽样及分层随机抽样的定义可得,每个个体被抽到的概率都相等,所以每个个体被抽到的概率都等于502023故选:A.5.睡眠很重要,教育部《关于进一步加强中小学生睡眠管理工作的通知》中强调“小学生每天睡眠时间应达到10小时,初中生应达到9小时,高中生应达到8小时”.某机构调查了1万个学生时间利用信息得出下图,则以下判断正确的有()A.高三年级学生平均学习时间最长B.中小学生的平均睡眠时间都没有达到《通知》中的标准,其中高中生平均睡眠时间最接近标准C.大多数年龄段学生平均睡眠时间少于学习时间D.与高中生相比,大学生平均学习时间大幅下降,释放出的时间基本是在睡眠【答案】B【分析】根据图象提供数据对选项进行分析,从而确定正确答案.【详解】根据图象可知,高三年级学生平均学习时间没有高二年级学生平均学习时间长,A选项错误.根据图象可知,中小学生平均睡眠时间都没有达到《通知》中的标准,高中生平均睡眠时间最接近标准,B选项正确.学习时间大于睡眠时间的有:初二、初三、高一、高二、高三,占比516.睡眠时间长于学习时间的占比1116,C选项错误.从高三到大学一年级,学习时间减少9.655.713.94,睡眠时间增加8.527.90.62,所以D选项错误.故选:B6.现从某学校450名同学中用随机数表法随机抽取30人参加一项活动.将这450名同学编号为001、002、L、449、450,要求从下表第2行第5列的数字开始向右读,则第5个被抽到的编号为()162277943949544354821737932378873520964384263491648442175331572455068877047447672176335025839212067663016378591695556719981050717512867358074439523879A.074B.447C.474D.476【答案】B【分析】利用随机数表法列举出样本的前5个个体的编号,即可得解.【详解】从随机数表第2行第5列开始,从左到右依次选取三个数字,去掉其中重复及大于450的数,样本的前5个个体的编号依次为175、331、068、047、447.故选:B.7.某高中为了了解本校学生考入大学一年后的学习情况,对本校上一年考入大学的同学进行了调查,根据学生所属的专业类型,制成饼图,现从这些同学中抽出100人进行进一步调查,已知张三为理学专业,李四为工学专业,则下列说法不正确的是()A.若按专业类型进行分层抽样,则张三被抽到的可能性比李四大B.若按专业类型进行分层抽样,则理学专业和工学专业应抽取30人和20人C.采用分层抽样比简单随机抽样更合理D.该问题中的样本容量为100【答案】A【分析】由分层抽样的特点以及它的定义判断选项A、B、C,利用样本容量的定义判断选项D.【详解】对于选项A,张三与李四被抽到的可能性一样大,故A错误;对于选项B,理学专业应抽取的人数为3010030100,工学专业应抽取的人数为2010020100,故B正确;对于选项C,因为各专业差异比较大,所以采用分层随机抽样更合理,故C正确;对于选项D,该问题中的样本容量为100,故D正确.故选:A.8.下列抽取样本的方式属于简单随机抽样的个数为()①从无限多个个体中抽取100个个体作为样本.②从20件玩具中一次性抽取3件进行质量检验.③某班有56个同学,指定个子最高的5名同学参加学校组织的篮球赛.④盒子中共有80个零件,从中选出5个零件进行质量检验,在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里.A.0B.1C.2D.3【答案】A【分析】按照简单随机抽样的定义判断即可.【详解】解:①从无限多个个体中抽取100个个体作为样本,不满足总体个数为有限个;②从20件玩具中一次性抽取3件进行质量检验,不满足逐个抽取;③某班有56个同学,指定个子最高的5名同学参加学校组织的篮球赛,不满足随机抽取;④盒子中共有80个零件,从中选出5个零件进行质量检验,在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里,不满足无放回抽取.综上可得以上均不满足简单随机抽样的定义,故选:A.9.某日某火锅店进货了四种食品,其中毛肚、鸭肠、牛肉及莴笋分别进货了700份、600份、500份、200份,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的毛肚份数与莴笋份数之和是()A.7B.13C.8D.9【答案】D【分析】根据分层抽样的比例,分别求出抽取的样本中毛肚的份数与莴笋的份数,即可求得答案.【详解】由题意可知采用分层抽样的方法抽取样本,则抽取的毛肚份数为700207700600500200,抽取的莴笋份数为200202700600500200,故抽取的毛肚份数与莴笋份数之和是729,故选:D10.下图是2010年—2021年(记2010年为第1年)中国创新产业指数统计图,由图可知下列结论不正确的是()A.从2010年到2021年,创新产业指数一直处于增长的趋势B.2021年的创新产业指数超过了2010年—2012年这3年的创新产业指数总和C.2021年的创新产业指数比2010年的创新产业指数的两倍还要大D.2010年到2014年的创新产业指数的增长速率比2017年到2021年的增长速率要慢【答案】B【分析】由统计图中对应年份的创业指数及走势,判断出四个选项的正误.【详解】从统计图可看出从2010年到2021年,创新产业指数一直处于增长的趋势,A正确;从统计图估计得到2021年的创新产业指数大约为350,而2010年—2012年这3年的创新产业指数总和大约为1503450,故2021年的创新产业指数没有超过2010年—2012年这3年的创新产业指数总和,B错误;因为2021年的创新产业指数大约为350,2010年的创业指数小于150,3501502,故2021年的创新产业指数比2010年的创新产业指数的两倍还要大,C正确;2010年到2014年的创新产业指数的折线倾斜程度小,而2017年到2021年的创业指数的折线倾斜程度大,故2010年到2014年的创新产业指数的增长速率比2017年到2021年的增长速率要慢,D正确.故选:B11.现从700瓶水中抽取5瓶进行检验,利用随机数表抽取样本时,先将700瓶水编号,可以编为000,001,002,…,699,在随机数表中任选一个数,例如选出第8行第6列的数3.(下面摘取了附表1的第8行与第9行)6301637859169555671998105071751286735807443952387933211234297864560782524207443815510013429966027954规定从选定的数3开始向右读,得到的第5个样本的编号为()A.719B.556C.512D.050【答案】D【分析】根据随机数表的使用方法判断即可.【详解】从3开始向右读,第一个符合条件的数为378,第二个数为591,第三个数为695,第四个数为556,第五个数为719,大于699,不符合,第六个数为981,大于699,不符合,第七个数为050,符合,所以第5个样本为050.故选:D.12.已知某地区中小学生人数比例和近视情况分别如图甲和图乙所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法随机抽取1%的学生进行调查,其中被抽取的小学生有80人,则样本容量和该地区的高中生近视人数分别为()A.200,25B.200,2500C.8000,25D.8000,2500【答案】B【分析】由扇形分布图观察小学生在整个样本中占40%,可得样本的容量为80=20040,再以此推出样本中高中生的人数为20025=,结合抽样比和条形图中高中生的近视率占比可算出该地区高中生的近视人数.【详解】由由扇形分布图结合分层抽样知识易知样本容量为80=20040,则样本中高中生的人数为20025=,易知总体的容量为50=50001,结合近视率条形图得该地区高中生近视人数为500050=.故选:B.13.中国古代数学专著《算法统宗》中有这样的记载:毛诗春秋周易书,九十四册共无余,毛诗一册三人读,春秋一册四人呼,周易五人读一本.意思为:现有《毛诗》《春秋》《周易》3种书共94册,若干人读这些书,要求每个人都要读到这3种书,若3人共读一本《毛诗》,4人共读一本《春秋》,5人共读一本《周易》,则刚好没有剩余.现要用分层抽样的方法从中抽取47册,则要从《毛诗》中抽取的册数为()A.12B.14C.18D.20【答案】D【分析】设《毛诗》有x册,《春秋》有y册,《周易》有z册,学生人数为m,根据已知条件可得出关于x、y、z、m的方程组,解出这四个未知数的值,再利用分层抽样可求得结果.【详解】设《毛诗》有x册,《春秋》有y册,《周易》有z册,学生人数为m,则94345xyzmxmymz,解得120403024mxyz,因此,用分层抽样的方法从中抽取47册,则要从《毛诗》中抽取的册数为47402094.故选:D.14.比较甲、乙两名学生的数学学科素养的各项能力指标值(满分为5分,分值高者为优),绘制了如图所示的六维能力雷达图,例如图中甲的数学抽象指标值为4,乙的数学抽象指标值为5,则下面叙述错误的是()A.甲的逻辑推理能力指标值优于乙的逻辑推理能力指标值B.乙的直观想象能力指标值优于甲的数学

1 / 30
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功