1.已知函数f(x)=ax+xlnx,且曲线y=f(x)在点(e,f(e))处的切线与直线4x-y+1=0平行.(1)求实数a的值;(2)求证:当x0时,f(x)4x-3.2.(2023·淄博模拟)已知函数f(x)=ex-x-1.(1)求函数f(x)的单调区间和极值;(2)当x≥0时,求证:f(x)+x+1≥12x2+cosx.3.已知函数f(x)=xlnx-ax.(1)当a=-1时,求函数f(x)在(0,+∞)上的最值;(2)证明:对一切x∈(0,+∞),都有lnx+11ex+1-2e2x成立.4.(2022·新高考全国Ⅱ)已知函数f(x)=xeax-ex.(1)当a=1时,讨论f(x)的单调性;(2)当x0时,f(x)-1,求a的取值范围;(3)设n∈N*,证明:112+1+122+2+…+1n2+nln(n+1).