第01讲 空间几何体的结构特征、表面积与体积(六大题型)(讲义)(学生版)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

资料收集整理【淘宝店铺:向阳百分百】1第01讲空间几何体的结构特征、表面积与体积目录资料收集整理【淘宝店铺:向阳百分百】2考点要求考题统计考情分析(1)认识柱、锥、台、球及简单组合体的结构特征,能运用这些特征描述现实生活中简单物体的结构.(2)知道球、棱(圆)柱、棱(圆)锥、棱(圆)台的表面积和体积的计算公式,并能解决简单的实际问题.(3)能用斜二测画法画出简单空间图形的直观图.2023年乙卷(理)第8题,5分2023年甲卷(文)第10题,5分2023年天津卷第8题,5分2023年II卷第14题,5分2023年I卷第12题,5分(1)掌握基本空间图形及其简单组合体的概念和基本特征,能够解决简单的实际问题;(2)多面体和球体的相关计算问题是近几年考查的重点;(3)运用图形的概念描述图形的基本关系和基本结果,突出考查直观想象和逻辑推理.知识点一:构成空间几何体的基本元素—点、线、面资料收集整理【淘宝店铺:向阳百分百】3(1)空间中,点动成线,线动成面,面动成体.(2)空间中,不重合的两点确定一条直线,不共线的三点确定一个平面,不共面的四点确定一个空间图形或几何体(空间四边形、四面体或三棱锥).知识点二:简单凸多面体—棱柱、棱锥、棱台1、棱柱:两个面互相平面,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱.(1)斜棱柱:侧棱不垂直于底面的棱柱;(2)直棱柱:侧棱垂直于底面的棱柱;(3)正棱柱:底面是正多边形的直棱柱;(4)平行六面体:底面是平行四边形的棱柱;(5)直平行六面体:侧棱垂直于底面的平行六面体;(6)长方体:底面是矩形的直平行六面体;(7)正方体:棱长都相等的长方体.2、棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥.(1)正棱锥:底面是正多边形,且顶点在底面的射影是底面的中心;(2)正四面体:所有棱长都相等的三棱锥.3、棱台:用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分叫做棱台,由正棱锥截得的棱台叫做正棱台.简单凸多面体的分类及其之间的关系如图所示.知识点三:简单旋转体—圆柱、圆锥、圆台、球1、圆柱:以矩形的一边所在的直线为旋转轴,其余三边旋转形成的面所围成的几何体叫做圆柱.2、圆柱:以直角三角形的一条直角边所在的直线为旋转轴,将其旋转一周形成的面所围成的几何体叫做圆锥.3、圆台:用平行于圆锥底面的平面去截圆锥,底面和截面之间的部分叫做圆台.资料收集整理【淘宝店铺:向阳百分百】44、球:以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称为球(球面距离:经过两点的大圆在这两点间的劣弧长度).知识点四:组合体由柱体、锥体、台体、球等几何体组成的复杂的几何体叫做组合体.知识点五:表面积与体积计算公式表面积公式表面积柱体2直棱柱底SchS2(斜棱柱底SclSc为直截面周长)2222()圆锥Srrlrrl锥体12正棱锥底SnahS2()圆锥Srrlrrl台体1()2正棱台上下SnaahSS22)圆台(Srrrlrl球24SR体积公式体积柱体柱VSh锥体13锥VShSh资料收集整理【淘宝店铺:向阳百分百】5台体1()3台VSSSSh球343VR知识点六:空间几何体的直观图1、斜二测画法斜二测画法的主要步骤如下:(1)建立直角坐标系.在已知水平放置的平面图形中取互相垂直的Ox,Oy,建立直角坐标系.(2)画出斜坐标系.在画直观图的纸上(平面上)画出对应图形.在已知图形平行于x轴的线段,在直观图中画成平行于Ox,Oy,使45xOy(或135),它们确定的平面表示水平平面.(3)画出对应图形.在已知图形平行于x轴的线段,在直观图中画成平行于x轴的线段,且长度保持不变;在已知图形平行于y轴的线段,在直观图中画成平行于y轴,且长度变为原来的一般.可简化为“横不变,纵减半”.(4)擦去辅助线.图画好后,要擦去x轴、y轴及为画图添加的辅助线(虚线).被挡住的棱画虚线.注:直观图和平面图形的面积比为2:4.2、平行投影与中心投影平行投影的投影线是互相平行的,中心投影的投影线相交于一点.题型一:空间几何体的结构特征例1.(2023·安徽·高三校联考阶段练习)已知几何体,“有两个面平行,其余各面都是平行四边形”是“几何体为棱柱”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件例2.(2023·全国·高三对口高考)设有三个命题;甲:底面是平行四边形的四棱柱是平行六面体;乙:底面是矩形的平行六面体是长方体;丙:直四棱柱是平行六面体.以上命题中真命题的个数为()A.0个B.1个C.2个D.3个例3.(2023·全国·高三专题练习)下列命题:资料收集整理【淘宝店铺:向阳百分百】6①有两个面平行,其他各面都是平行四边形的几何体叫做棱柱;②有两侧面与底面垂直的棱柱是直棱柱;③过斜棱柱的侧棱作棱柱的截面,所得图形不可能是矩形;④所有侧面都是全等的矩形的四棱柱一定是正四棱柱.其中正确命题的个数为()A.0B.1C.2D.3变式1.(2023·新疆·统考模拟预测)下列命题中正确的是()A.有两个平面平行,其余各面都是平行四边形的几何体是棱柱.B.各个面都是三角形的几何体是三棱锥.C.夹在圆柱的两个平行截面间的几何体还是一个旋转体.D.圆锥的顶点与底面圆周上任意一点的连线都是母线.变式2.(2023·全国·高三专题练习)下列说法正确的是()A.三角形的直观图是三角形B.直四棱柱是长方体C.平行六面体不是棱柱D.两个平面平行,其余各面是梯形的多面体是棱台变式3.(2023·全国·高三专题练习)给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0B.1C.2D.3变式4.(2023·全国·高三专题练习)如图所示,观察四个几何体,其中判断正确的是()A.是棱台B.是圆台C.不是棱柱D.是棱锥【解题方法总结】资料收集整理【淘宝店铺:向阳百分百】7空间几何体结构特征的判断技巧(1)紧扣结构特征是判断的关键,依据条件构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,然后再依据题意判定.(2)说明一个命题是错误的,只要举出一个反例即可.题型二:空间几何体的表面积例4.(2023·湖北武汉·统考模拟预测)已知某圆锥的母线长、底面圆的直径都等于球的半径,则球与圆锥的表面积之比为()A.8B.163C.316D.18例5.(2023·河南郑州·统考模拟预测)在一个正六棱柱中挖去一个圆柱后,剩余部分几何体如图所示.已知正六棱柱的底面正六边形边长为3cm,高为4cm,内孔半径为1cm,则此几何体的表面积是()2cm.A.277236π2B.722738πC.722736πD.602736π例6.(2023·安徽安庆·安庆一中校考三模)陀螺起源于我国,最早出土的石制陀螺是在山西夏县发现的新石器时代遗址.如图所示的是一个陀螺立体结构图.已知,底面圆的直径12cmAB,圆柱体部分的高6cmBC=,圆锥体部分的高4cmCD,则这个陀螺的表面积(单位:2cm)是()A.1441213πB.1442413πC.1081213πD.1082413π变式5.(2023·西藏拉萨·统考一模)位于徐州园博园中心位置的国际馆(一云落雨),使用现代科技雾化“造云”,打造温室客厅,如图,这个国际馆中3个展馆的顶部均采用正四棱锥这种经典几何形式,表达了理性主义与浪漫主义的对立与统一.其中最大的是3号展馆,其顶部所对应的正四棱锥底面边长为19.2m,高为9m,则该正四棱锥的侧面面积与底面面积之比约为()(参考数据:173.1613.16)资料收集整理【淘宝店铺:向阳百分百】8A.2B.1.71C.1.37D.1变式6.(2023·湖南长沙·高三校联考阶段练习)为了给热爱朗读的师生提供一个安静独立的环境,某学校修建了若干“朗读亭”.如图所示,该朗读亭的外形是一个正六棱柱和正六棱锥的组合体,正六棱柱两条相对侧棱所在的轴截面为正方形,若正六棱锥的高与底面边长的比为2:3,则正六棱锥与正六棱柱的侧面积的比值为()A.78B.4324C.19D.127变式7.(2023·河北·统考模拟预测)《九章算术》是我国古代的数学名著.其“商功”中记载:“正四面形棱台(即正四棱台)建筑物为方亭.”现有如图所示的烽火台,其主体部分为一方亭,将它的主体部分抽象成1111ABCDABCD的正四棱台(如图所示),其中上底面与下底面的面积之比为1:16,方亭的高为棱台上底面边长的3倍.已知方亭的体积为3567m,则该方亭的表面积约为()(52.2,31.7,21.4)A.2380mB.2400mC.2450mD.2480m变式8.(2023·甘肃张掖·高台县第一中学校考模拟预测)仿钧玫瑰紫釉盘是收藏于北京故宫博物院的一件明代宣德年间产的瓷器.该盘盘口微撇,弧腹,圈足.足底切削整齐.通体施玫瑰紫釉,釉面棕眼密集,美不胜收.仿钧玫瑰紫釉盘的形状可近似看成是圆台和圆柱的组合体,其口径为15.5cm,足径为9.2cm,资料收集整理【淘宝店铺:向阳百分百】9顶部到底部的高为4.1cm,底部圆柱高为0.7cm,则该仿钧玫瑰紫釉盘圆台部分的侧面积约为()(参考数据:π的值取3,21.48254.6)A.2143.1cmB.2151.53cmC.2155.42cmD.2170.43cm【解题方法总结】(1)多面体的表面积是各个面的面积之和.(2)旋转体的表面积是将其展开后,展开图的面积与底面面积之和.(3)组合体的表面积求解时注意对衔接部分的处理.题型三:空间几何体的体积例7.(2023·广东梅州·统考三模)在马致远的《汉宫秋》楔子中写道:“毡帐秋风迷宿草,穹庐夜月听悲笳.”毡帐是古代北方游牧民族以为居室、毡制帷幔.如图所示,某毡帐可视作一个圆锥与圆柱的组合体,圆锥的高为4,侧面积为15,圆柱的侧面积为18,则该毡帐的体积为()A.39πB.18πC.38πD.45π例8.(2023·重庆沙坪坝·高三重庆一中校考阶段练习)若某圆锥的侧面展开图是一个半径为2的半圆面,其内接正四棱柱的高为33,则此正四棱柱的体积是()A.968B.938C.8327D.8627例9.(2023·山东青岛·高三统考期中)已知正四棱锥的各顶点都在同一个球面上,球的体积为36π,则该正四棱锥的体积最大值为()A.18B.643C.814D.27变式9.(2023·湖北武汉·高三统考开学考试)攒尖是我国古代建筑中屋顶的一种结构形式,宋代称为最尖,清代称攒尖,通常有圆形攒尖、三角攒尖、四角攒尖、八角攒尖,也有单檐和重檐之分,多见于亭阁式建筑、园林建筑.下面以四角攒尖为例,如图,它的屋顶部分的轮廓可近似看作一个正四棱锥.已知正四棱锥的资料收集整理【淘宝店铺:向阳百分百】10底面边长为32米,侧棱长为5米,则其体积为()立方米.A.242B.24C.722D.72变式10.(2023·广东河源·高三校联考开学考试)最早的测雨器记载见于南宋数学家秦九韶所著的《数书九章》(1247年).该书第二章为“天时类”,收录了有关降水量计算的四个例子,分别是“天池测雨”、“圆罂测雨”、“峻积验雪”和“竹器验雪”.如图“竹器验雪”法是下雪时用一个圆台形的器皿收集雪量(平地降雪厚度器皿中积雪体积除以器皿口面积),已知数据如图(注意:单位cm),则平地降雪厚度的近似值为()A.91cm12B.31cm4C.95cm12D.97cm12变式11.(2023·浙江·校联考模拟预测)如图是我国古代量粮食的器具“升”,其形状是正四棱台,上、下底面边长分别为20cm和10cm,侧棱长为56cm.“升”

1 / 17
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功