第05讲古典概型与概率的基本性质(模拟精练+真题演练)1.(2023·江西南昌·南昌市八一中学校考三模)某同学口袋中共有5个大小相同、质地均匀的小球.其中3个编号为5,2个编号为10,现从中取出3个小球,编号之和恰为20的概率为()A.115B.415C.815D.352.(2023·河南·校联考模拟预测)抛掷一枚骰子两次,第一次得到的点数记为x,第二次得到的点数记为y,则平面直角坐标系xOy中,点,xy到原点O的距离不大于4的概率为()A.16B.736C.29D.143.(2023·四川南充·模拟预测),,,,ABCDE五名学生按任意次序站成一排,则A和B站两端的概率为()A.120B.110C.15D.254.(2023·四川南充·模拟预测)同时抛掷两颗质地均匀的骰子,则两颗骰子出现的点数之和为4的概率为()A.121B.112C.111D.2215.(2023·海南省直辖县级单位·嘉积中学校考三模)将甲、乙、丙、丁四人安排到篮球与演讲比赛现场进行服务工作,每个比赛现场需要两人,则甲、乙安排在一起的概率为()A.12B.13C.14D.166.(2023·陕西西安·校联考模拟预测)从1,2,3,4,5中任取两个不相同的数,则这两个数的和为质数的概率为()A.15B.12C.35D.237.(2023·吉林白山·抚松县第一中学校考模拟预测)2013年华人数学家张益唐证明了孪生素数猜想的一个弱化形式.孪生素数猜想是希尔伯特在1900年提出的23个问题之一,可以这样描述:存在无穷多个素数p,使得2p是素数,素数对,2pp称为孪生素数.在不超过26的素数中,随机选取两个不同的数,其中能够组成孪生素数的概率是()A.118B.445C.19D.178.(2023·江西景德镇·统考三模)写算,是一种格子乘法,也是笔算乘法的一种,用以区别筹算与珠算,它由明代数学家吴敬在其撰写的《九章算法比类大全》一书中提出,是从天元式的乘法演变而来.例如计算8961,将被乘数89计入上行,乘数61计入右行,然后以乘数61的每位数字乘被乘数89的每位数字,将结果计入相应的格子中,最后从右下方开始按斜行加起来,满十向上斜行进一,如图,即得5429,若从表内的8个数字(含相同的数字,表周边数据不算在内)中取1个数字,这个数字大于5的概率为()A.14B.38C.12D.589.(2023·河北唐山·迁西县第一中学校考二模)抛掷一个质地均匀的骰子两次,记第一次得到的点数为a,第二次得到的点数为b,则函数3213fxxaxbxc没有极值点的概率为()A.14B.518C.1136D.1310.(2023·四川成都·校联考二模)一个不透明的袋中装有2个红球,2个黑球,1个白球,这些球除颜色外,其他完全相同,现从袋中一次性随机抽取3个球,则“这3个球的颜色各不相同”的概率为()A.12B.310C.35D.2511.(多选题)(2023·吉林白山·统考二模)将A,B,C,D这4张卡片分给甲、乙、丙、丁4人,每人分得一张卡片,则().A.甲得到A卡片与乙得到A卡片为对立事件B.甲得到A卡片与乙得到A卡片为互斥但不对立事件C.甲得到A卡片的概率为14D.甲、乙2人中有人得到A卡片的概率为1212.(多选题)(2023·辽宁葫芦岛·统考二模)一袋中有大小相同的4个红球和2个白球,则下列说法正确的是()A.从中任取3球,恰有2个白球的概率是15;B.从中有放回的取球6次,每次任取一球,设取到红球次数为X,则2EX;C.现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为25;D.从中有放回的取球3次,每次任取一球,则至少有一次取到白球的概率为1927.13.(多选题)(2023·吉林长春·统考模拟预测)有两批种子,甲批种子15粒,能发芽的占80%,乙批种子10粒,能发芽的占70%,则下列说法正确的有().A.从甲批种子中任取两粒,至少一粒能发芽的概率是3435B.从乙批种子中任取两粒,至多一粒能发芽的概率是715C.从甲乙两批中各任取一粒,至少一粒能发芽的概率是4750D.如果将两批种子混合后,随机抽出一粒,能发芽的概率为192514.(多选题)(2023·全国·校联考二模)七巧板是古代中国劳动人民的发明,顾名思义,它由七块板组成,其中包括五个等腰直角三角形,一个正方形和一个平行四边形.利用七巧板可以拼出人物、动物等图案一千余种.下列说法正确的是()A.七块板中等腰直角三角形的直角边边长有3个不同的数值,它们的比为1:2:2B.从这七块板中任取两块板,可拼成正方形的概率为17C.从这七块板中任取两块板,面积相等的概率为521D.使用一套七巧板中的n块17,nnN,可拼出不同大小的正方形3种15.(2023·福建厦门·厦门一中校考模拟预测)某商场举行抽奖活动,箱子里有10个大小一样的小球,其中红色的5个,黄色的3个,蓝色的2个,现从中任意取出3个,则其中至少含有两种不同颜色的小球的概率为.16.(2023·江西九江·统考一模)2022年11月第十四届中国国际航空航天博览会在珠海举办.在此次航展上,国产大飞机“三兄弟”运油-20、C919、AG600M震撼亮相,先后进行飞行表演.大飞机是大国的象征、强国的标志.国产大飞机“三兄弟”比翼齐飞的梦想,在航空人的接续奋斗中成为现实.甲乙两位同学参观航展后各自从“三兄弟”模型中购买一架,则两位同学购买的飞机模型不同..的概率是.17.(2023·新疆·统考三模)从11至14世纪涌现出一批著名的数学家和其创作的数学著作,如秦九韶的《数书九章》,李冶的《测圆海镜》,杨辉的《详解九章算法》、《日用算法》和《杨辉算法》.某学校团委为拓展学生课外学习兴趣,现从上述五部著作中任意选择两部作为学生课外拓展学习的参考书目,则所选的两部中至少有一部是杨辉著作的概率为.18.(2023·山西吕梁·统考二模)现有小赵、小钱、小孙、小李、小刘5人去北京、上海、广州三地参加研讨会,每人只能去一个城市,每个城市至少去一人,则小赵不去北京的概率为.19.(2023·江西九江·统考一模)2022年11月8日,江西省第十六届运动会在九江市体育中心公园主体育场开幕,这是九江市举办的规模最大、规格最高的综合性体育赛事.赛事期间,有3000多名志愿者参加了活动.现将4名志愿者分配到跳高、跳远2个项目参加志愿服务活动,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则“恰好有一个项目分配了3名志愿者”的概率为.20.(2023·新疆·统考三模)中医是中国传统文化的瑰宝.中医方剂不是药物的任意组合,而是根据中药配伍原则,总结临床经验,用若干药物配制组成的药方,以达到取长补短、辨证论治的目的.中医传统名方“八珍汤”是由补气名方“四君子汤”(由人参、白术、茯苓、炙甘草四味药组成)和补血名方“四物汤”(由熟地黄、白芍、当归、川芎四味药组成)两个方共八味药组合而成的主治气血两虚证方剂.现从“八珍汤”的八味药中任取四味,取到的四味药既不能组成“四君子汤”也不能组成“四物汤”的概率是.21.(2023·贵州遵义·统考三模)2018年12月8日,我国在西昌卫星发射中心用长征三号乙运载火箭成功发射嫦娥四号探测器,开启了月球探测的新旅程.为了解广大市民是否实时关注了这一事件,随机选取了部分年龄在20岁到70岁之间的市民作为一个样本,将此样本按年龄20,30,30,40,40,50,50,60,60,70分为5组,并得到如图所示的频率分布直方图.(1)求图中实数a的值,并估计样本数据中市民年龄的众数;(2)为进一步调查市民在日常生活中是否关注国家航天技术发展的情况,现按照分层抽样的方法从40,50,50,60,60,70三组中抽取了6人,再从这6人中任意抽取2人来讲述自己所了解的中国航天的发展历程,求这2人中至少有1人的年龄位于50,60之间的概率.22.(2023·甘肃临夏·统考一模)某学校学生会积极组织学生学习《中共中央关于党的百年奋斗重大成就和历史经验的决议》,组织线上考试后,随机抽取了若干人线上考试的成绩(满分60分),得到如图的频率分布直方图:已知,成绩最高的一组的人数为10.(1)求样本容量n;(2)样本估计总体的思想,估计该校学生的平均分数(每一组取组中点值近似代替本组考试成绩);(3)按照分层抽样从成绩在[36,40),[56,60]两个组内共抽取8人组成交流互助小组,在这个小组中任选2人发言,求至少有1人的成绩在[56,60]内的概率.1.(2022•新高考Ⅰ)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.16B.13C.12D.232.(2022•全国)在1,2,3,4,5,6,7,8,9中任取3个不同的数,则这3个数的和能被3整除的概率是()A.928B.13C.514D.253.(2021•甲卷)将3个1和2个0随机排成一行,则2个0不相邻的概率为()A.0.3B.0.5C.0.6D.0.84.(2020•新课标Ⅰ)设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为()A.15B.25C.12D.455.(2020•全国)从写有数字1,2,3,4,5的5张卡片中任选2张,其上数字和为偶数的概率是()A.15B.310C.25D.356.(2019•新课标Ⅱ)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()A.23B.35C.25D.157.(2019•新课标Ⅰ)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.516B.1132C.2132D.11168.(2019•新课标Ⅲ)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()A.16B.14C.13D.129.(2023•上海)为了学习宣传党的二十大精神,某校学生理论宣讲团赴社区宣讲,已知有4名男生,6名女生,从10人中任选3人,则恰有1名男生2名女生的概率为.10.(2022•乙卷)从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为.11.(2022•上海)为了检测学生的身体素质指标,从游泳类1项,球类3项,田径类4项共8项项目中随机抽取4项进行检测,则每一类都被抽到的概率为.12.(2022•甲卷)从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为.13.(2021•上海)已知花博会有四个不同的场馆A,B,C,D,甲、乙两人每人选2个去参观,则他们的选择中,恰有一个馆相同的概率为.