公众号:高中试卷君公众号:高中试卷君§10.7二项分布、超几何分布与正态分布考试要求1.理解二项分布、超几何分布的概念,能解决一些简单的实际问题.2.借助正态曲线了解正态分布的概念,并进行简单应用.知识梳理1.二项分布(1)伯努利试验只包含两个可能结果的试验叫做伯努利试验;将一个伯努利试验独立地重复进行n次所组成的随机试验称为n重伯努利试验.(2)二项分布一般地,在n重伯努利试验中,设每次试验中事件A发生的概率为p(0p1),用X表示事件A发生的次数,则X的分布列为P(X=k)=Cknpk(1-p)n-k,k=0,1,2,…,n.如果随机变量X的分布列具有上式的形式,则称随机变量X服从二项分布,记作X~B(n,p).(3)两点分布与二项分布的均值、方差①若随机变量X服从两点分布,则E(X)=p,D(X)=p(1-p).②若X~B(n,p),则E(X)=np,D(X)=np(1-p).2.超几何分布一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=CkMCn-kN-MCnN,k=m,m+1,m+2,…,r,其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M}.如果随机变量X的分布列具有上式的形式,那么称随机变量X服从超几何分布.3.正态分布(1)定义若随机变量X的概率分布密度函数为f(x)=2221·e2x--,x∈R,其中μ∈R,σ0为参数,则称随机变量X服从正态分布,记为X~N(μ,σ2).(2)正态曲线的特点①曲线是单峰的,它关于直线x=μ对称;公众号:高中试卷君公众号:高中试卷君②曲线在x=μ处达到峰值1σ2π;③当|x|无限增大时,曲线无限接近x轴.(3)3σ原则①P(μ-σ≤X≤μ+σ)≈0.6827;②P(μ-2σ≤X≤μ+2σ)≈0.9545;③P(μ-3σ≤X≤μ+3σ)≈0.9973.(4)正态分布的均值与方差若X~N(μ,σ2),则E(X)=μ,D(X)=σ2.常用结论1.“二项分布”与“超几何分布”的区别:有放回抽取问题对应二项分布,不放回抽取问题对应超几何分布,当总体容量很大时,超几何分布可近似为二项分布来处理.2.超几何分布有时也记为X~H(n,M,N),其均值E(X)=nMN,D(X)=nMN1-MN1-n-1N-1.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)两点分布是二项分布当n=1时的特殊情形.(√)(2)若X表示n次重复抛掷1枚骰子出现点数是3的倍数的次数,则X服从二项分布.(√)(3)从装有3个红球、3个白球的盒中有放回地任取一个球,连取3次,则取到红球的个数X服从超几何分布.(×)(4)当μ取定值时,正态曲线的形状由σ确定,σ越小,曲线越“矮胖”.(×)教材改编题1.如果某一批玉米种子中,每粒发芽的概率均为23,那么播下5粒这样的种子,恰有2粒不发芽的概率是()A.80243B.8081C.163243D.163729答案A解析用X表示发芽的粒数,则X~B5,23,则P(X=3)=C35×233×1-232=80243,故播下5粒这样的种子,恰有2粒不发芽的概率为80243.2.某班有48名同学,一次考试后的数学成绩服从正态分布N(80,102),则理论上在80分到90分的人数约是()A.32B.16C.8D.20公众号:高中试卷君公众号:高中试卷君答案B解析因为数学成绩近似地服从正态分布N(80,102),所以P(|x-80|≤10)≈0.6827.根据正态密度曲线的对称性可知,位于80分到90分之间的概率是位于70分到90分之间的概率的一半,所以理论上在80分到90分的人数是12×0.6827×48≈16.3.在含有3件次品的10件产品中,任取4件,X表示取到的次品的个数,则P(X=1)=________.答案12解析由题意得,P(X=1)=C13C37C410=12.题型一二项分布例1(1)(2023·海口模拟)某班50名学生通过直播软件上网课,为了方便师生互动,直播屏幕分为1个大窗口和5个小窗口,大窗口始终显示老师讲课的画面,5个小窗口显示5名不同学生的画面.小窗口每5分钟切换一次,即再次从全班随机选择5名学生的画面显示,且每次切换相互独立.若一节课40分钟,则该班甲同学一节课在直播屏幕上出现的时间的均值是()A.10分钟B.5分钟C.4分钟D.2分钟答案C解析每5分钟算作一轮,每一轮甲同学出现在直播屏幕上的概率为550=110,设他在直播屏幕上出现的轮次为X,根据题意得,X~B8,110,E(X)=8×110=0.8,设甲同学一节课在直播屏幕上出现的时间为Y(单位:分钟),则E(Y)=E(5X)=5×0.8=4(分钟).(2)(2022·衡阳模拟)某地政府为鼓励大学生创业,制定了一系列优惠政策.已知创业项目甲成功的概率为23,项目成功后可获得政府奖金20万元;创业项目乙成功的概率为P0(0P01),项目成功后可获得政府奖金30万元.项目没有成功,则没有奖励,每个项目有且只有一次实施机会,两个项目的实施是否成功互不影响,项目成功后当地政府兑现奖励.①大学毕业生张某选择创业项目甲,毕业生李某选择创业项目乙,记他们获得的奖金累计为X(单位:万元),若X≤30的概率为79.求P0的大小;②若两位大学毕业生都选择创业项目甲或创业项目乙进行创业,问:他们选择何种创业项目,公众号:高中试卷君公众号:高中试卷君累计得到的奖金的均值更大?解①由已知得,张某创业成功的概率为23,李某创业成功的概率为P0,且两人是否创业成功互不影响,记“这2人累计获得的奖金X≤30”的事件为A,则事件A的对立事件为“X=50”,∵P(X=50)=23P0,∴P(A)=1-P(X=50)=1-23P0=79,解得P0=13.②设两位大学毕业生都选择创业项目甲且创业成功的次数为X1,都选择创业项目乙且创业成功的次数为X2,则这两人选择项目甲累计获得的奖金的均值为E(20X1),选择项目乙累计获得的奖金的均值为E(30X2),由已知可得,X1~B2,23,X2~B(2,P0),∴E(X1)=43,E(X2)=2P0,∴E(20X1)=20E(X1)=20×43=803,E(30X2)=30E(X2)=60P0,若E(20X1)E(30X2),即80360P0,解得0P049;若E(20X1)E(30X2),即80360P0,解得49P01;若E(20X1)=E(30X2),即803=60P0,解得P0=49.综上所述,当0P049时,他们都选择项目甲进行创业,累计得到的奖金的均值更大;当49P01时,他们都选择项目乙进行创业,累计得到的奖金的均值更大;当P0=49时,他们选择两项目进行创业,累计得到的奖金的均值相等.思维升华二项分布问题的解题关键(1)定型:①在每一次试验中,事件发生的概率相同.②各次试验中的事件是相互独立的.③在每一次试验中,试验的结果只有两个,即发生与不发生.(2)定参:确定二项分布中的两个参数n和p,即试验发生的次数和试验中事件发生的概率.公众号:高中试卷君公众号:高中试卷君跟踪训练1(1)已知随机变量X~B(n,p),E(X)=2,D(X)=23,则P(X≥2)等于()A.2027B.23C.1627D.1327答案A解析因为随机变量X~B(n,p),E(X)=2,D(X)=23,则np=2,np1-p=23,解得n=3,p=23,所以P(X≥2)=1-P(X=1)-P(X=0)=1-C13×231×1-233-1-C03×230×1-233-0=1-29-127=2027.(2)某中学面向全校所有学生开展一项有关每天睡眠时间的问卷调查,调查结果显示,每天睡眠时间少于7小时的学生占40%,而每天睡眠时间不少于8小时的学生只有30%.现从所有问卷中随机抽取4份问卷进行回访(视频率为概率).①求抽取到的问卷中至少有2份调查结果为睡眠时间不少于7小时的概率;②记抽取到的问卷中调查结果为睡眠时间少于7小时的问卷份数为X,求X的分布列及均值E(X).解①根据题意可知,每天睡眠时间少于7小时的学生的概率为25,每天睡眠时间不少于7小时的学生的概率为35,所以4份问卷中至少有2份结果为睡眠时间不少于7小时的概率为P=1-C04×254-C14×35×253=513625.②根据题意可知,X的所有可能取值为0,1,2,3,4,且X~B4,25,则P(X=0)=354=81625,P(X=1)=C14×25×353=216625,P(X=2)=C24×252×352=216625,P(X=3)=C34×253×35=96625,公众号:高中试卷君公众号:高中试卷君P(X=4)=254=16625,所以X的分布列为X01234P816252166252166259662516625所以E(X)=4×25=85.题型二超几何分布例22022年12月4日,神舟十四号载人飞船返回舱在东风着陆场成功着陆,航天员顺利出舱,神舟十四号载人飞行任务圆满完成.为纪念中国航天事业成就,发扬并传承中国航天精神,某校高一年级组织2000名学生进行了航天知识竞赛(满分:100分)并进行记录,根据得分将数据分成7组:[20,30),[30,40),…,[80,90],绘制出如图所示的频率分布直方图.(1)用频率估计概率,从该校随机抽取2名同学,求其中1人得分低于70分,另1人得分不低于80分的概率;(2)从得分在[60,90]的学生中利用比例分配的分层随机抽样的方法选出8名学生,若从中选出3人参加有关航天知识演讲活动,求选出的3人中竞赛得分不低于70分的人数X的分布列及均值.解(1)每名学生得分低于70分的概率为1-(0.04+0.02)×10=0.4,不低于80分的概率为0.02×10=0.2.故其中1人得分低于70分,另1人得分不低于80分的概率为C12×0.4×0.2=425.(2)由频率分布直方图可得,8人中分数在[60,70)的有2人,[70,90]的有6人,所以X~H(3,6,8),X的所有可能取值为1,2,3,P(X=1)=C16C22C38=328,P(X=2)=C12C26C38=1528,公众号:高中试卷君公众号:高中试卷君P(X=3)=C36C38=514.故X的分布列为X123P3281528514故E(X)=3×68=94.思维升华(1)超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.超几何分布的特征是:①考察对象分两类;②已知各类对象的个数;③从中抽取若干个个体,考查某类个体数X的分布列.(2)超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其本质是古典概型.跟踪训练2为了适当疏导电价矛盾,保障电力供应,支持可再生能源发展,促进节能减排,某省推出了省内居民阶梯电价的计算标准:以一个年度为计费周期,月度滚动使用.第一阶梯:年用电量在2160度以下(含2160度),执行第一档电价0.5653元/度;第二阶梯:年用电量在2161度到4200度内(含4200度),超出2160度的电量执行第二档电价0.6153元/度;第三阶梯:年用电量在4200度以上,超出4200度的电量执行第三档电价0.8653元/度.某市的电力部门从本市的用户中随机抽取10户,统计其同一年度的用电情况,列表如下:用户编号12345678910年用电量/度1000126014001824218024232815332544114600(1)计算表中编号为10的用户该年应交的电费;(2)现要在这10户中任意选取4户,对其用电情况进行进一步分析,求取到第二阶梯的户数的分布列.解(1)因为第二档电价比第一档电价每度多0.05元,第三档电价比