2024年高考数学一轮复习(新高考版) 第3章 §3.7 利用导数研究函数的零点

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

公众号:高中试卷君公众号:高中试卷君§3.7利用导数研究函数的零点考试要求函数零点问题在高考中占有很重要的地位,主要涉及判断函数零点的个数或范围.高考常考查三次函数与复合函数的零点问题,以及函数零点与其他知识的交汇问题,一般作为解答题的压轴题出现.题型一利用函数性质研究函数的零点例1已知函数f(x)=xsinx-1.(1)讨论函数f(x)在区间-π2,π2上的单调性;(2)证明:函数y=f(x)在[0,π]上有两个零点.(1)解因为函数f(x)的定义域为R,f(-x)=-xsin(-x)-1=f(x),所以函数f(x)为偶函数,又f′(x)=sinx+xcosx,且当x∈0,π2时,f′(x)≥0,所以函数f(x)在0,π2上单调递增,又函数f(x)为偶函数,所以f(x)在-π2,0上单调递减,综上,函数f(x)在0,π2上单调递增,在-π2,0上单调递减.(2)证明由(1)得,f(x)在0,π2上单调递增,又f(0)=-10,fπ2=π2-10,所以f(x)在0,π2内有且只有一个零点,当x∈π2,π时,令g(x)=f′(x)=sinx+xcosx,则g′(x)=2cosx-xsinx,当x∈π2,π时,g′(x)0恒成立,即g(x)在π2,π上单调递减,又gπ2=10,g(π)=-π0,则存在m∈π2,π,使得g(m)=0,且当x∈π2,m时,g(x)g(m)=0,即f′(x)0,则f(x)在π2,m上单调递增,当x∈(m,π]时,有g(x)g(m)=0,即f′(x)0,则f(x)在(m,π]上单调递减,又fπ2=π2-10,f(π)=-10,所以f(x)在(m,π]上有且只有一个零点,综上,函数y=f(x)在[0,π]上有2个零点.思维升华利用函数性质研究函数的零点,主要是根据函数单调性、奇偶性、最值或极值的符号确定函数零点的个数,此类问题在求解过程中可以通过数形结合的方法确定函数存在零点的条件.跟踪训练1(2023·芜湖模拟)已知函数f(x)=ax+(a-1)lnx+1x-2,a∈R.公众号:高中试卷君公众号:高中试卷君(1)讨论f(x)的单调性;(2)若f(x)只有一个零点,求a的取值范围.解(1)函数f(x)的定义域为(0,+∞),f′(x)=a+a-1x-1x2=ax-1x+1x2,①若a≤0,则f′(x)0,f(x)在(0,+∞)上单调递减;②若a0,则当x∈0,1a时,f′(x)0,f(x)单调递减,当x∈1a,+∞时,f′(x)0,f(x)单调递增.综上,当a≤0时,f(x)在(0,+∞)上单调递减;当a0时,f(x)在0,1a上单调递减,在1a,+∞上单调递增.(2)若a≤0,f1e=ae+1-a+e-2=1e-1a+e-10,f(1)=a-10.结合函数的单调性可知,f(x)有唯一零点.若a0,因为函数在0,1a上单调递减,在1a,+∞上单调递增,所以要使得函数有唯一零点,只需f(x)min=f1a=1-(a-1)lna+a-2=(a-1)(1-lna)=0,解得a=1或a=e.综上,a≤0或a=1或a=e.题型二数形结合法研究函数的零点例2(2023·郑州质检)已知函数f(x)=ex-ax+2a,a∈R.(1)讨论函数f(x)的单调性;(2)求函数f(x)的零点个数.解(1)f(x)=ex-ax+2a,定义域为R,且f′(x)=ex-a,当a≤0时,f′(x)0,则f(x)在R上单调递增;当a0时,令f′(x)=0,则x=lna,当xlna时,f′(x)0,f(x)单调递减;当xlna时,f′(x)0,f(x)单调递增.综上所述,当a≤0时,f(x)在R上单调递增;当a0时,f(x)在(-∞,lna)上单调递减,在(lna,+∞)上单调递增.(2)令f(x)=0,得ex=a(x-2),当a=0时,ex=a(x-2)无解,∴f(x)无零点,当a≠0时,1a=x-2ex,令φ(x)=x-2ex,x∈R,∴φ′(x)=3-xex,当x∈(-∞,3)时,φ′(x)0;当x∈(3,+∞)时,φ′(x)0,∴φ(x)在(-∞,3)上单调递增,在(3,+∞)上单调递减,且φ(x)max=φ(3)=1e3,公众号:高中试卷君公众号:高中试卷君又x→+∞时,φ(x)→0,x→-∞时,φ(x)→-∞,∴φ(x)的图象如图所示.当1a1e3,即0ae3时,f(x)无零点;当1a=1e3,即a=e3时,f(x)有一个零点;当01a1e3,即ae3时,f(x)有两个零点;当1a0,即a0时,f(x)有一个零点.综上所述,当a∈[0,e3)时,f(x)无零点;当a∈(-∞,0)∪{e3}时,f(x)有一个零点;当a∈(e3,+∞)时,f(x)有两个零点.思维升华含参数的函数零点个数,可转化为方程解的个数,若能分离参数,可将参数分离出来后,用x表示参数的函数,作出该函数的图象,根据图象特征求参数的范围或判断零点个数.跟踪训练2(2023·长沙模拟)已知函数f(x)=alnx-2x.(1)若a=2,求曲线y=f(x)在x=1处的切线方程;(2)若函数f(x)在(0,16]上有两个零点,求a的取值范围.解(1)当a=2时,f(x)=2lnx-2x,该函数的定义域为(0,+∞),f′(x)=2x-1x,又f(1)=-2,f′(1)=1,因此,曲线y=f(x)在x=1处的切线方程为y+2=x-1,即x-y-3=0.(2)①当a≤0时,f′(x)=ax-1x0,则f(x)在(0,+∞)上单调递减,不符合题意;②当a0时,由f(x)=alnx-2x=0可得2a=lnxx,令g(x)=lnxx,其中x0,则直线y=2a与曲线y=g(x)的图象在(0,16]内有两个交点,g′(x)=xx-lnx2xx=2-lnx2xx,令g′(x)=0,可得x=e216,列表如下,公众号:高中试卷君公众号:高中试卷君x(0,e2)e2(e2,16]g′(x)+0-g(x)↗极大值↘所以函数g(x)在区间(0,16]上的极大值为g(e2)=2e,且g(16)=ln2,作出g(x)的图象如图所示.由图可知,当ln2≤2a2e,即ea≤2ln2时,直线y=2a与曲线y=g(x)的图象在(0,16]内有两个交点,即f(x)在(0,16]上有两个零点,因此,实数a的取值范围是e,2ln2.题型三构造函数法研究函数的零点例3(12分)(2022·新高考全国Ⅰ)已知函数f(x)=ex-ax和g(x)=ax-lnx有相同的最小值.(1)求a;[切入点:求f(x),g(x)的最小值](2)证明:存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.[关键点:利用函数的性质与图象判断ex-x=b,x-lnx=b的解的个数及解的关系]公众号:高中试卷君公众号:高中试卷君公众号:高中试卷君公众号:高中试卷君公众号:高中试卷君公众号:高中试卷君思维升华涉及函数的零点(方程的根)问题,主要利用导数确定函数的单调区间和极值点,根据函数零点的个数寻找函数在给定区间内的极值以及区间端点的函数值与0的关系,从而求得参数的取值范围.跟踪训练3(2021·全国甲卷)已知a0且a≠1,函数f(x)=xaax(x0).(1)当a=2时,求f(x)的单调区间;(2)若曲线y=f(x)与直线y=1有且仅有两个交点,求a的取值范围.解(1)当a=2时,f(x)=x22x(x0),f′(x)=x2-xln22x(x0),令f′(x)0,则0x2ln2,此时函数f(x)单调递增,令f′(x)0,则x2ln2,此时函数f(x)单调递减,所以函数f(x)的单调递增区间为0,2ln2,单调递减区间为2ln2,+∞.(2)曲线y=f(x)与直线y=1有且仅有两个交点,可转化为方程xaax=1(x0)有两个不同的解,即方程lnxx=lnaa有两个不同的解.公众号:高中试卷君公众号:高中试卷君设g(x)=lnxx(x0),则g′(x)=1-lnxx2(x0),令g′(x)=1-lnxx2=0,得x=e,当0xe时,g′(x)0,函数g(x)单调递增,当xe时,g′(x)0,函数g(x)单调递减,故g(x)max=g(e)=1e,且当xe时,g(x)∈0,1e,又g(1)=0,所以0lnaa1e,所以a1且a≠e,即a的取值范围为(1,e)∪(e,+∞).课时精练1.(2023·济南质检)已知函数f(x)=lnx+axx,a∈R.(1)若a=0,求f(x)的最大值;(2)若0a1,求证:f(x)有且只有一个零点.(1)解若a=0,则f(x)=lnxx,其定义域为(0,+∞),∴f′(x)=1-lnxx2,由f′(x)=0,得x=e,∴当0xe时,f′(x)0;当xe时,f′(x)0,∴f(x)在(0,e)上单调递增,在(e,+∞)上单调递减,∴f(x)max=f(e)=1e.(2)证明f′(x)=1x+ax-lnx-axx2=1-lnxx2,由(1)知,f(x)在(0,e)上单调递增,在(e,+∞)上单调递减,∵0a1,∴当xe时,f(x)=lnx+axx=a+lnxx0,故f(x)在(e,+∞)上无零点;公众号:高中试卷君公众号:高中试卷君当0xe时,f(x)=lnx+axx,∵f1e=a-e0,f(e)=a+1e0,且f(x)在(0,e)上单调递增,∴f(x)在(0,e)上有且只有一个零点,综上,f(x)有且只有一个零点.2.函数f(x)=ax+xlnx在x=1处取得极值.(1)求f(x)的单调区间;(2)若y=f(x)-m-1在定义域内有两个不同的零点,求实数m的取值范围.解(1)f(x)的定义域为(0,+∞),f′(x)=a+lnx+1,由f′(1)=a+1=0,解得a=-1.则f(x)=-x+xlnx,∴f′(x)=lnx,令f′(x)0,解得x1;令f′(x)0,解得0x1.∴f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1).(2)y=f(x)-m-1在(0,+∞)内有两个不同的零点,则函数y=f(x)与y=m+1的图象在(0,+∞)内有两个不同的交点.由(1)知,f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,f(x)min=f(1)=-1,f(e)=0,作出f(x)图象如图.由图可知,当-1m+10,即-2m-1时,y=f(x)与y=m+1的图象有两个不同的交点.因此实数m的取值范围是(-2,-1).3.(2022·河南名校联盟模拟)已知f(x)=(x-1)ex-13ax3+13a(a∈R).(1)若函数f(x)在[0,+∞)上单调递增,求a的取值范围;(2)当a≤e时,讨论函数f(x)零点的个数.解(1)f(x)=(x-1)ex-13ax3+13a,则f′(x)=x(ex-ax).∵函数f(x)在[0,+∞)上单调递增,公众号:高中试卷君公众号:高中试卷君∴f′(x)=x(ex-ax)≥0在[0,+∞)上恒成立,则ex-ax≥0,x≥0.当x=0时,则1≥0,即a∈R;当x0时,则a≤exx,构建g(x)=exx(x0),则g′(x)=x-1exx2(x0),令g′(x)0,则x1,令g′(x)0,则0x1,∴g(x)在(0,1)上单调递减,在(1,+∞)上单调递增,则g(x)≥g(1)=e,∴a≤e,综上所述,a≤e.(2)f(x)=(x-1)ex-13ax3+13a=(x-1)ex-13ax2+x+1,令f(x)=0,则x=1或ex-13a

1 / 12
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功