公众号:高中试卷君公众号:高中试卷君必刷小题11数列一、单项选择题1.数列-15,17,-19,111,…的通项公式可能是an等于()A.-1n-12n+3B.-1n3n+2C.-1n-13n+2D.-1n2n+3答案D解析由a1=-15,排除A,C;由a2=17,排除B;分母为奇数列,分子为(-1)n,故D正确.2.已知数列{an}为等比数列,公比为q,若a5=4(a4-a3),则q等于()A.4B.3C.2D.1答案C解析由题意,得a1q4=4(a1q3-a1q2),解得q=2.3.在正项等比数列{an}中,a2=4,a6=64,Sn=510,则n等于()A.6B.7C.8D.9答案C解析由a2=4,a6=64,得q4=a6a2=16(q0),所以q=2,a1=2,所以510=21-2n1-2,解得n=8.4.定义[x]表示不超过x的最大整数,若数列{an}的通项公式为an=3n-1,则等式a15+a25+a35+…+a105等于()A.30B.29C.28D.27答案D解析a15+a25+a35+…+a105=25+55+85+…+295=0+(1×2)+(2×2)+(3×1)+(4×2)+(5×2)=27.5.等比数列{an}中,a1+a2=6,a3+a4=12,则{an}的前8项和为()A.90B.30(2+1)C.45(2+1)D.72答案A公众号:高中试卷君公众号:高中试卷君解析等比数列{an}中,a1+a2=6,a3+a4=(a1+a2)q2=12,∴q2=2,a5+a6=(a3+a4)q2=24,同理a7+a8=48,则{an}的前8项和a1+a2+a3+a4+a5+a6+a7+a8=6+12+24+48=90.6.设数列{an},{bn}都是正项等比数列,Sn,Tn分别为数列{lgan}与{lgbn}的前n项和,且SnTn=n+12n,则33logab等于()A.35B.95C.59D.53答案D解析因为数列{an},{bn}都是正项等比数列,所以数列{lgan}与{lgbn}为等差数列,因为SnTn=n+12n,所以S5T5=lga1·a2·…·a5lgb1·b2·…·b5=lga53lgb53=33logba=610=35.则33logab=53.7.(2022·新高考全国Ⅱ)图1是中国古代建筑中的举架结构,AA′,BB′,CC′,DD′是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图,其中DD1,CC1,BB1,AA1是举,OD1,DC1,CB1,BA1是相等的步,相邻桁的举步之比分别为DD1OD1=0.5,CC1DC1=k1,BB1CB1=k2,AA1BA1=k3.已知k1,k2,k3成公差为0.1的等差数列,且直线OA的斜率为0.725,则k3等于()A.0.75B.0.8C.0.85D.0.9答案D解析设OD1=DC1=CB1=BA1=1,则CC1=k1,BB1=k2,AA1=k3,依题意,有k3-0.2=k1,k3-0.1=k2,公众号:高中试卷君公众号:高中试卷君且DD1+CC1+BB1+AA1OD1+DC1+CB1+BA1=0.725,所以0.5+3k3-0.34=0.725,故k3=0.9.8.等差数列{an}的前n项和为Sn.已知a1=-5,a3=-1.记bn=Snan(n=1,2,…),则数列{bn}的()A.最小项为b3B.最大项为b3C.最小项为b4D.最大项为b4答案C解析等差数列{an}中,a1=-5,a3=-1,所以d=2,an=-5+2(n-1)=2n-7,Sn=-5n+nn-12×2=n2-6n,则bn=Snan=nn-62n-7,令f(x)=x2-6x2x-7,x0,则f′(x)=2x2-7x+212x-720,故f(x)在0,72,72,+∞上单调递增,没有最大值,因为b1=1,b3=9,b4=-8,结合数列的函数特性易得,当n=4时,bn取得最小值.二、多项选择题9.等差数列{an}的公差为d,前n项和为Sn,当首项a1和d变化时,a3+a8+a13是一个定值,则下列各数也为定值的有()A.a7B.a8C.S15D.S16答案BC解析由等差中项的性质可得a3+a8+a13=3a8为定值,则a8为定值,S15=15()a1+a152=15a8为定值,但S16=16()a1+a162=8()a8+a9不是定值.10.下列说法正确的是()A.任意等差数列{an}和{bn},数列{an+bn}是等差数列B.存在等差数列{an}和{bn},数列{anbn}是等差数列C.任意等比数列{an}和{bn},数列{an+bn}是等比数列D.存在等比数列{an}和{bn},数列{anbn}是等比数列答案ABD解析A项,若{an}和{bn}都是等差数列,不妨设an=k1n+b1,bn=k2n+b2,故可得an+bn=(k1+k2)n+b1+b2,则an+1+bn+1=(k1+k2)(n+1)+b1+b2,公众号:高中试卷君公众号:高中试卷君则an+1+bn+1-(an+bn)=k1+k2,故数列{an+bn}是等差数列,故A正确;B项,设数列{an}是数列1,1,1;数列{bn}是数列2,2,2,故可得数列{anbn}是数列2,2,2,是等差数列,故B正确;C项,若{an}和{bn}是等比数列,设an=a1qn1,bn=b1qn2,故可得an+bn=a1qn1+b1qn2,an+1+bn+1=a1qn+11+b1qn+12,则an+1+bn+1an+bn=a1qn+11+b1qn+12a1qn1+b1qn2,不是常数,故{an+bn}不是等比数列,故C错误;D项,设数列{an}是数列1,1,1;数列{bn}是数列2,2,2,故可得数列{anbn}是数列2,2,2,是等比数列,故D正确.11.数列{an}的前n项和为Sn,若a1=1,an+1=2Sn(n∈N*),则有()A.Sn=3n-1B.{Sn}为等比数列C.an=2·3n-1D.an=1,n=1,2·3n-2,n≥2答案ABD解析由题意,数列{an}的前n项和满足an+1=2Sn(n∈N*),当n≥2时,an=2Sn-1,两式相减,可得an+1-an=2(Sn-Sn-1)=2an,可得an+1=3an,即an+1an=3(n≥2),又a1=1,则a2=2S1=2a1=2,所以a2a1=2,所以数列{an}的通项公式为an=1,n=1,2·3n-2,n≥2.当n≥2时,Sn=an+12=2·3n-12=3n-1,又S1=a1=1,适合上式,所以数列{an}的前n项和为Sn=3n-1,又Sn+1Sn=3n3n-1=3,所以数列{Sn}为首项为1,公比为3的等比数列,综上可得选项ABD是正确的.12.设Sn为等比数列{an}的前n项和,若an0,a1=12,Sn2,则{an}的公比可取的值为()A.14B.15C.45D.2答案AB解析设等比数列{an}的公比为q,则q≠1.公众号:高中试卷君公众号:高中试卷君∵an0,a1=12,Sn2,∴{an}是递减数列,12×qn-10,121-qn1-q2,∴1q0且1≤4-4q,解得0q≤34.∴{an}的公比的取值范围是0,34,故{an}的公比可取的值为14或15.三、填空题13.已知数列{an}满足a1=1,11+an+1-11+an=1,则a5=________.答案-79解析∵11+an+1-11+an=1,∴11+an是以11+a1=12为首项,1为公差的等差数列,∴11+an=12+(n-1)×1=n-12,∴11+a5=5-12=92,解得a5=-79.14.已知等比数列{an}共有2n项,其和为-240,且奇数项的和比偶数项的和大80,则公比q=________.答案2解析由题意,得S奇+S偶=-240,S奇-S偶=80,解得S奇=-80,S偶=-160,所以q=S偶S奇=-160-80=2.15.在数列{an}中,a1=2,且nan+1=(n+2)an,则an=________.答案n(n+1)解析由已知得,an+1an=n+2n,则有a2a1=31,a3a2=42,a4a3=53,…,an-1an-2=nn-2,anan-1=n+1n-1,将这(n-1)个等式相乘得,ana1=nn+11×2,则an=n(n+1).16.已知数列{an}的前n项和为Sn.且a1=1,{lgSn}是公差为lg3的等差数列,则a2+a4+…+a2n=________.答案9n-14公众号:高中试卷君公众号:高中试卷君解析S1=a1=1,则lgS1=lg1=0,∵{lgSn}是公差为lg3的等差数列,∴lgSn=(n-1)lg3=lg3n-1,则Sn=3n-1,当n≥2时,an=Sn-Sn-1=3n-1-3n-2=2×3n-2,a2=2,当n≥2时,an+1an=2×3n-12×3n-2=3,∴数列{an}自第二项起构成公比为3的等比数列,可得a2+a4+…+a2n=21-9n1-9=9n-14.