专题10.10 统计与概率(2021-2023年)真题训练(原卷版)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

专题10.10统计与概率一、单选题1.(2022年高考全国甲卷数学(理)真题)某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则()A.讲座前问卷答题的正确率的中位数小于70%B.讲座后问卷答题的正确率的平均数大于85%C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差2.(2022年高考全国乙卷数学(文)真题)分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h),得如下茎叶图:则下列结论中错误的是()A.甲同学周课外体育运动时长的样本中位数为7.4B.乙同学周课外体育运动时长的样本平均数大于8C.甲同学周课外体育运动时长大于8的概率的估计值大于0.4D.乙同学周课外体育运动时长大于8的概率的估计值大于0.63.(2021年全国高考甲卷数学(文)试题)为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是()A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间4.(2021年全国高考甲卷数学(理)试题)将4个1和2个0随机排成一行,则2个0不相邻的概率为()A.13B.25C.23D.455.(2021年全国高考甲卷数学(文)试题)将3个1和2个0随机排成一行,则2个0不相邻的概率为()A.0.3B.0.5C.0.6D.0.86.(2021年全国高考乙卷数学(理)试题)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A.60种B.120种C.240种D.480种7.(2021年全国新高考II卷数学试题)某物理量的测量结果服从正态分布210,N,下列结论中不正确的是()A.越小,该物理量在一次测量中在(9.9,10.1)的概率越大B.该物理量在一次测量中大于10的概率为0.5C.该物理量在一次测量中小于9.99与大于10.01的概率相等D.该物理量在一次测量中落在(9.9,10.2)与落在(10,10.3)的概率相等8.(2022年新高考全国I卷数学真题)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.16B.13C.12D.239.(2022年高考全国甲卷数学(文)真题)从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为()A.15B.13C.25D.2310.(2022年新高考全国II卷数学真题)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有()A.12种B.24种C.36种D.48种11.(2023年新课标全国Ⅱ卷数学真题)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有().A.4515400200CC种B.2040400200CC种C.3030400200CC种D.4020400200CC种12.(2023年高考全国乙卷数学(理)真题)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有()A.30种B.60种C.120种D.240种13.(2023年高考全国甲卷数学(理)真题)某地的中学生中有60%的同学爱好滑冰,50%的同学爱好滑雪,70%的同学爱好滑冰或爱好滑雪.在该地的中学生中随机调查一位同学,若该同学爱好滑雪,则该同学也爱好滑冰的概率为()A.0.8B.0.6C.0.5D.0.414.(2023年高考全国甲卷数学(理)真题)现有5名志愿者报名参加公益活动,在某一星期的星期六、星期日两天,每天从这5人中安排2人参加公益活动,则恰有1人在这两天都参加的不同安排方式共有()A.120B.60C.30D.2015.(2023年高考全国甲卷数学(文)真题)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A.16B.13C.12D.2316.(2023年高考全国乙卷数学(文)真题)某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为()A.56B.23C.12D.1317.(2021年全国新高考I卷数学试题)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立18.(2022年高考全国乙卷数学(理)真题)某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为123,,ppp,且3210ppp.记该棋手连胜两盘的概率为p,则()A.p与该棋手和甲、乙、丙的比赛次序无关B.该棋手在第二盘与甲比赛,p最大C.该棋手在第二盘与乙比赛,p最大D.该棋手在第二盘与丙比赛,p最大二、多选题19.(2021年全国新高考I卷数学试题)有一组样本数据1x,2x,…,nx,由这组数据得到新样本数据1y,2y,…,ny,其中iiyxc(1,2,,),inc为非零常数,则()A.两组样本数据的样本平均数相同B.两组样本数据的样本中位数相同C.两组样本数据的样本标准差相同D.两组样本数据的样本极差相同20.(2021年全国新高考II卷数学试题)下列统计量中,能度量样本12,,,nxxx的离散程度的是()A.样本12,,,nxxx的标准差B.样本12,,,nxxx的中位数C.样本12,,,nxxx的极差D.样本12,,,nxxx的平均数21.(2023年新课标全国Ⅱ卷数学真题)在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为(01),收到0的概率为1;发送1时,收到0的概率为(01),收到1的概率为1.考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).A.采用单次传输方案,若依次发送1,0,1,则依次收到l,0,1的概率为2(1)(1)B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为2(1)C.采用三次传输方案,若发送1,则译码为1的概率为23(1)(1)D.当00.5时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率22.(2023年新课标全国Ⅰ卷数学真题)有一组样本数据126,,,xxx,其中1x是最小值,6x是最大值,则()A.2345,,,xxxx的平均数等于126,,,xxx的平均数B.2345,,,xxxx的中位数等于126,,,xxx的中位数C.2345,,,xxxx的标准差不小于126,,,xxx的标准差D.2345,,,xxxx的极差不大于126,,,xxx的极差三、填空题23.(2022年高考全国乙卷数学(文)真题)从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为_____.24.(2022年新高考全国II卷数学真题)已知随机变量X服从正态分布22,N,且(22.5)0.36PX,则(2.5)PX_____.25.(2022年高考全国甲卷数学(理)真题)从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为_____.26.(2023年新课标全国Ⅰ卷数学真题)某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有_____种(用数字作答).27.(2022年新高考全国I卷数学真题)81()yxyx的展开式中26xy的系数为_____(用数字作答).四、解答题28.(2021年全国高考乙卷数学(理)试题)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备9.810.310.010.29.99.810.010.110.29.7新设备10.110.410.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为x和y,样本方差分别记为21s和22s.(1)求x,y,21s,22s;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果2212210ssyx,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).29.(2022年高考全国甲卷数学(文)真题)甲、乙两城之间的长途客车均由A和B两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:准点班次数未准点班次数A24020B21030(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?附:22()()()()()nadbcKabcdacbd,2PKk…0.1000.0500.010k2.7063.8416.63530.(2021年全国新高考I卷数学试题)某学校组织“一带一路”知识竞赛,有A,B两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分;B类问题中的每个问题回答正确得80分,否则得0分,已知小明能正确回答A类问题的概率为0.8,能正确回答B类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A类问题,记X为小明的累计得分,求X的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.31.(2021年全国高考甲卷数学(文)试题)甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:一级品二级品合计甲机床15050200乙机床12080200合计270130400(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()nadbcKabcdacbd2PKk0.0500.0100.001k3.8416.63510.82832.(2022年高考全国甲卷数学(理)真题)甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.(1)

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功