3.2 函数的性质(精讲)(教师版)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

资料整理【淘宝店铺:向阳百分百】3.2函数的性质(精讲)资料整理【淘宝店铺:向阳百分百】一.函数单调性的定义1.单调函数的定义条件一般地,设函数f(x)的定义域为I,区间D⊆I,如果∀x1,x2∈D,当x1<x2时都有f(x1)f(x2)都有f(x1)f(x2)结论那么就称函数f(x)在区间D上单调递增那么就称函数f(x)在区间D上单调递减当函数f(x)在它的定义域上单调递增时,称它是增函数当函数f(x)在它的定义域上单调递减时,称它是减函数图示2.单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.3.复合函数的单调性:函数y=f(u),u=φ(x)在函数y=f(φ(x))的定义域上,如果y=f(u)与u=φ(x)的单调性相同,那么y=f(φ(x))单调递增;如果y=f(u)与u=φ(x)的单调性相反,那么y=f(φ(x))单调递减.二.函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足:条件(1)∀x∈I,都有f(x)≤M(2)∃x∈I,使得f(x)=M(1)∀x∈I,都有f(x)≥M;(2)∃x∈I,使得f(x)=M结论M是函数y=f(x)的最大值M是函数y=f(x)的最小值三.函数的奇偶性奇偶性定义图象特点偶函数一般地,设函数f(x)的定义域为I,如果∀x∈I,都有-x∈I,且f(-x)=f(x)关于y轴对称奇函数f(-x)=-f(x)关于原点对称四.函数的周期性1.周期函数资料整理【淘宝店铺:向阳百分百】对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数f(x)为周期函数,称T为这个函数的周期.2.最小正周期如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.五.函数的对称性1.对称性:若对于R上的任意x都有f(2a-x)=f(x)或f(-x)=f(2a+x),则y=f(x)的图象关于直线x=a对称.2.对称中心:f(-x+b)+f(x+b)=2a,则函数y=f(x)的图象关于点(b,a)中心对称.一.判断函数单调性常用的方法1.定义法:一般步骤为取值→作差→变形→判断符号→得出结论.2.图象法:如果f(x)是以图象形式给出的,或者f(x)的图象易作出,则可由图象的上升或下降确定单调性.3.导数法:先求导数,利用导数值的正负确定函数的单调性(或单调区间).4.性质法:①对于由基本初等函数的和、差构成的函数,根据各初等函数的增减性及f(x)±g(x)的增减性进行判断;②对于复合函数,先将函数y=f(g(x))分解成y=f(u)和u=g(x),再讨论(判断)这两个函数的单调性,最后根据复合函数“同增异减”的规则进行判断.5.在公共定义域内,增+增=增,减+减=减,增-减=增,减-增=减.6.复合函数y=f[g(x)]的单调性判断方法:“同增异减”.易错点:求函数的单调区间,首先需要求函数的定义域.二.利用单调性求参数的范围(或值)1.视参数为已知数,依据函数的图象或单调性的定义,确定函数的单调区间,与已知单调区间比较求参数;2.若分段函数在R上是单调的,则该函数在每一段上具有相同的单调性,还要注意分界点处的函数值大小.3.比较函数值的大小时,转化到同一个单调区间内,然后利用函数的单调性解决.4.求解函数不等式,由条件脱去“f”,转化为自变量间的大小关系,应注意函数的定义域.5.利用单调性求参数的取值(范围).根据其单调性直接构建参数满足的方程(组)(不等式(组))或先得到其图象的升降,再结合图象求解.对于分段函数,要注意衔接点的取值.三.判断函数的奇偶性1,定义法2.图象法资料整理【淘宝店铺:向阳百分百】3.性质法设f(x),g(x)的定义域分别是D1,D2,那么在它们的公共定义域上,有下面结论:f(x)g(x)f(x)+g(x)f(x)-g(x)f(x)g(x)f(g(x))偶函数偶函数偶函数偶函数偶函数偶函数偶函数奇函数不能确定不能确定奇函数偶函数奇函数偶函数不能确定不能确定奇函数偶函数奇函数奇函数奇函数奇函数偶函数奇函数同性加减不变性,异性加减非奇偶同性乘除为偶异性乘除为奇复合函数有偶为偶,两奇为奇四.函数奇偶性的应用1.求函数值:将待求值利用奇偶性转化为求已知解析式区间上的函数值.2.求解析式:将待求区间上的自变量转化到已知解析式的区间上,再利用奇偶性的定义求出.3.求解析式中的参数:利用待定系数法求解,根据f(x)±f(-x)=0得到关于参数的恒等式,由系数的对等性得方程(组),进而得出参数的值.4画函数图象:利用函数的奇偶性可画出函数在其对称区间上的图象.5.求特殊值:利用奇函数的最大值与最小值之和为零可求一些特殊结构的函数值.考法一具体函数的单调区间【例1-1】(2023云南)下列函数在R上为增函数的是()A.2yx=B.yxC.yxD.1yx【答案】B【解析】2yx=在,0上单调递减,在0,上单调递增,故选项A错误;yx在R上为增函数,选项B正确;yx在0,上单调递减,故选项C错误;1yx在,0单调递减,在0,单调递减,故选项D错误.故选:B.【例1-2】(2023·云南·校联考二模)函数()eln(1)xfxx的单调递增区间为____________.资料整理【淘宝店铺:向阳百分百】【答案】0,/0,【解析】由题得函数定义域为211(1,),()e(),()e01(1)xxfxgxgxxx,所以()gx在(1,)上单调递增,又(0)0g,所以当0x时,()0fx,故()fx的单调递增区间为(0,)(或[0,)).故答案为:(0,)【例1-3】(1)(2023·江西)函数225fxxx的单调增区间是()A.,1和0,1B.,1和1,C.1,0和1,D.()1,0-和0,1(2)(2022·广东)函数232fxxx的单调递增区间是()A.3,2B.31,2和2,C.,1和3,22D.3,2和2,(3)(2022秋·河北廊坊·高三校考阶段练习)函数()|1||2|fxxx的单调递增区间是()A.[1,)B.(,1]C.1,2D.[2,)【答案】(1)C(2)B(3)D【解析】(1)由22()2525fxxxxxfx,则fx为偶函数,fx的图像关于y轴对称.当0x时,225fxxx,对称轴为1x,所以fx在1,上递增,在0,1递减;则当0x时,fx在1,0递增,在,1递减,则有fx的递增区间为1,0,1,.故选:C资料整理【淘宝店铺:向阳百分百】(2)222232,13232,1232,2xxxyxxxxxxxx如图所示:函数的单调递增区间是31,2和2,.故选:B.(3)因为32,1()121,1223,2xxfxxxxxx,所以()fx的增区间为[2,),故选:D.【例1-4】(2022·全国·高三专题练习)函数22()log23fxxx的单调增区间是()A.(1,3)B.1,C.(,1)D.(3,)【答案】D【解析】22()log23fxxx要满足2230xx,解得:3x或1x,又2logyu是增函数,所以只需求出223gxxx的单调递增区间,223gxxx的对称轴为1x,且开口向上,结合函数的定义域可得:22()log23fxxx的单调递增区间为(3,)故选:D【一隅三反】1.(2023春·江西·高三校联考阶段练习)函数2lnxfxx的单调递增区间为__________.【答案】0,e【解析】函数2lnxfxx的定义域为0,,则312lnxfxx,令()0fx¢,解得0ex,故函数fx的单调递增区间为0,e.故答案为:0,e.2.(2023·西藏林芝)函数2()32fxxx的单调递增区间是【答案】1,1【解析】函数2()32fxxx的定义域需要满足2320xx,解得()fx定义域为13,,因为232yxx在11,上单调递增,所以2()32fxxx在11,上单调递增。资料整理【淘宝店铺:向阳百分百】3.(2023·江西)函数22()log(34)fxxx的单调减区间为______.【答案】(,1)【解析】函数22()log(34)fxxx中,2340xx,解得1x或4x,即函数()fx的定义域为(,1)(4,),234uxx在(,1)上单调递减,在(4,)上单调递增,而2logyx在(0,)单调递增,于是得22()log(34)fxxx在(,1)上单调递减,在(4,)上单调递增,所以函数22()log(34)fxxx的单调减区间为(,1).故答案为:(,1)4.(2023北京)已知函数()2fxxxx,则下列结论正确的是①递增区间是(0,)②递减区间是(,1)③递增区间是(,1)④递增区间是(1,1)【答案】④【解析】因为函数222,0()22,0xxxfxxxxxxx,作出函数fx的图象,如图所示:由图可知,递增区间是(1,1),递减区间是(,1)和1,..5(2022·|1|45xy山东)函数的单调减区间是_______.【答案】1,【解析】令1ux,则45uy∵4015,∴45uy在,上单调递减作出1ux的图象资料整理【淘宝店铺:向阳百分百】由图象可以1ux在,1上单调递减,在1,上单调递增∴|1|45xy在,1上单调递增,在1,上单调递减故答案为:1,.考法二函数单调性的应用【例2-1】(2023·全国·高三专题练习)设Ra,则“1a…”是“函数11axfxx在1,为减函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】B【解析】由题意可得1111axafxaxx为减函数,则10a,解得1a.因为1a推不出1a,11aa,所以“1a…”是“函数11axfxx在1,为减函数”的必要不充分条件,故选:B【例2-2】(2023·全国·高三专题练习)若函数6(3)37()           7xaxxfxax,在R上为严格增函数,则实数a的取值范围是()A.(1,3);B.(2,3);C.9,34;D.9,34;【答案】D【解析】fx在R上为严格增函数,76301373aaaa,解得934a.即实数a的取值范围是9,34.故选:D资料整理【淘宝店铺:向阳百分百】【例2-3】(2023秋·江西抚州·高三临川一中校考期末)已知函数2log3afxxax在0,1上是减函数,则实数a的取值范围是()A.0,1B.1,4C.0,11,4D.2,4【答案】D【解析】函数2log3afxxax在0,1上是减函数,当01a时,2222

1 / 27
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功