专题18 排列组合与二项式定理(原卷版)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

资料整理【淘宝店铺:向阳百分百】专题18排列组合与二项式定理目录一览2023真题展现考向一排列组合真题考查解读近年真题对比考向一排列组合考向二二项式定理命题规律解密名校模拟探源易错易混速记/二级结论速记考向一排列组合1.(2023•新高考Ⅱ•第3题)某学校为了了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有()A.𝐶40045⋅𝐶20015种B.𝐶40020⋅𝐶20040种C.𝐶40030⋅𝐶20030种D.𝐶40040⋅𝐶20020种2.(2023•新高考Ⅰ•第13题)某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有种(用数字作答).【命题意图】考查二项式定理、排列组合。考查二项式定理公式和应用排列组合计算【考查要点】二项展开基本定理,还会涉及到三项展开,考查特定项、特定项的系数、二项式系数,同时会涉及到赋值法的应用,排列组合常以现实生活、社会热点为载体.多为小题.【得分要点】1.排列组合问题的一些解题技巧资料整理【淘宝店铺:向阳百分百】(1)特殊元素优先安排.(2)合理分类与准确分步.(3)排列、组合混合问题先选后排.(4)相邻问题捆绑处理.(5)不相邻问题插空处理.(6)定序问题除法处理.(7)分排问题直排处理.(8)“小集团”排列问题先整体后局部.(9)构造模型.(10)正难则反、等价转化.2.排列、组合问题几大解题方法:(1)直接法.(2)排除法.(3)捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”.(4)插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”.(5)占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则.(6)调序法:当某些元素次序一定时,可用此法.(7)平均法:若把kn个不同元素平均分成k组,每组n个,共有𝐶𝑘𝑛𝑛𝐶(𝑘−1)𝑛𝑛⋯𝐶𝑛𝑛𝐴𝑘𝑘.(8)隔板法:常用于解正整数解组数的问题.(9)定位问题:从n个不同元素中每次取出k个不同元素作排列规定某r个元素都包含在内,并且都排在某r个指定位置则有𝐴𝑟𝑟𝐴𝑛−𝑟𝑘−𝑟.(10)指定元素排列组合问题:①从n个不同元素中每次取出k个不同的元素作排列(或组合),规定某r个元素都包含在内.先C后A策略,排列C𝑟𝑟C𝑛−𝑟𝑘−𝑟A𝑘𝑘;组合C𝑟𝑟C𝑛−𝑟𝑘−𝑟.②从n个不同元素中每次取出k个不同元素作排列(或组合),规定某r个元素都不包含在内.先C后A策略,排列C𝑛−𝑟𝑘A𝑘𝑘;组合C𝑛−𝑟𝑘.③从n个不同元素中每次取出k个不同元素作排列(或组合),规定每个排列(或组合)都只包含某r个元素中的s个元素.先C后A策略,排列C𝑟𝑠C𝑛−𝑟𝑘−𝑠A𝑘𝑘;组合C𝑟𝑠C𝑛−𝑟𝑘−𝑠.3.二项式定理(a+b)n=C0nan+C1nan-1b+…+Crnan-rbr+…+Cnnbn(n∈N*),这个公式所表示的定理叫做二项式定理,右资料整理【淘宝店铺:向阳百分百】边的多项式叫做(a+b)n的二项展开式,其中的系数Crn(r=0,1,2,…,n)叫做第r+1项的二项式系数.式中的Crnan-rbr叫做二项式展开式的第r+1项(通项),用Tr+1表示,即展开式的第r+1项;Tr+1=Crnan-rbr.考向一排列组合3.(2022•新高考Ⅱ)甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同的排列方式共有()A.12种B.24种C.36种D.48种考向二二项式定理4.(2022•新高考Ⅰ)(1﹣)(x+y)8的展开式中x2y6的系数为(用数字作答).二项展开基本定理考查特定项、特定项的系数、二项式系数,同时会涉及到赋值法的应用。排列组合常以现实生活为载体.多为小题.一.计数原理的应用(共4小题)1.(多选)(2023•罗定市校级模拟)将四个不同的小球放入三个分别标有1、2、3号的盒子中,不允许有空盒子的放法有多少种?下列结论正确的有()A.CCCCB.CAC.CCAD.182.(2023•汕头二模)电脑调色板有红、绿、蓝三种基本颜色,每种颜色的色号均为0~255.在电脑上绘画可以分别从三种颜色的色号中各选一个配成一种颜色,那么在电脑上可配成的颜色种数为()A.2563B.27C.2553D.63.(2023•盐都区校级三模)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有种.4.(2023•定远县校级模拟)小林同学喜欢吃4种坚果:核桃、腰果、杏仁、榛子,他有5种颜色的“每日坚果”袋.每个袋子中至少装1种坚果,至多装4种坚果.小林同学希望五个袋子中所装坚果种类各不相同,且每一种坚果在袋子中出现的总次数均为偶数,那么不同的方案数为()A.20160B.20220C.20280D.20340二.排列及排列数公式(共3小题)5.(2023•荔湾区校级模拟)设a∈N+,且a<27,则(27﹣a)(28﹣a)(29﹣a)…(34﹣a)等于()资料整理【淘宝店铺:向阳百分百】A.B.C.D.6.(2023•安化县校级模拟)某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有()A.504种B.960种C.1008种D.1108种7.(2023•洪山区校级模拟)已知m,n,p均为正整数,则满足m!+n!=5p的一组解为(m,n,p)=.三.组合及组合数公式(共4小题)8.(2023•沙河口区校级一模)的值是.9.(2023•绍兴二模)的值为.10.(2023•辽宁模拟)我们常常运用对同一个量算两次的方法来证明组合恒等式,如:从装有编号为1,2,3,…,n+1的n+1个球的口袋中取出m个球(0<m≤n,m,n∈N),共有种取法.在种取法中,不取1号球有种取法;取1号球有种取法.所以.试运用此方法,写出如下等式的结果:=.11.(2023•常德二模)从4台甲型和5台乙型电视机中任意取出三台,其中至少要有甲型和乙型电视机各1台,则不同的取法共有种.四.排列、组合及简单计数问题(共31小题)12.(2023•贺兰县校级四模)从2名教师和5名学生中,选出3人参加“我爱我的祖国”主题活动.要求入选的3人中至少有一名教师,则不同的选取方案的种数是()A.20B.25C.30D.5513.(2023•让胡路区校级模拟)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙必须排在最后一位,该台晚会节目演出顺序的编排方案共有()A.36种B.42种C.48种D.54种14.(2023•商丘三模)某小学从2位语文教师,4位数学教师中安排3人到西部三个省支教,每个省各1人,且至少有1位语文教师入选,则不同安排方法有()种.A.16B.20C.96D.12015.(2023•沙坪坝区校级模拟)A,B,C,D,E共5人排成一列,要求A与B不相邻,且C排在A后面,则共有()种排法.A.36B.54C.72D.96资料整理【淘宝店铺:向阳百分百】16.(2023•南通三模)某人将斐波那契数列的前6项“1,1,2,3,5,8”进行排列设置数字密码,其中两个“1”必须相邻,则可以设置的不同数字密码有()A.120种B.240种C.360种D.480种17.(2023•雁峰区校级模拟)如图,一圆形信号灯分成A,B,C,D四块灯带区域,现有3种不同的颜色供灯带使用,要求在每块灯带里选择1种颜色,且相邻的2块灯带选择不同的颜色,则不同的信号总数为()A.18B.24C.30D.4218.(2023•屯昌县二模)某学校为了丰富同学们的寒假生活,寒假期间给同学们安排了6场线上讲座,其中讲座A只能安排在第一或最后一场,讲座B和C必须相邻,问不同的安排方法共有()A.34种B.56种C.96种D.144种19.(2023•连云港模拟)现要从A,B,C,D,E这5人中选出4人,安排在甲、乙、丙、丁4个岗位上,如果A不能安排在甲岗位上,则安排的方法有()A.56种B.64种C.72种D.96种20.(2023•贺兰县校级模拟)某教师有相同的语文参考书3本,相同的数学参考书4本,从中取出4本赠送给4为学生,每位学生1本,则不同的赠送方法共有()A.15种B.20种C.48种D.60种21.(2023•贵州模拟)公元五世纪,数学家祖冲之估计圆周率π的值的范围:3.1415926<π<3.1415927,为纪念祖冲之在圆周率的成就,把3.1415926称为“祖率”,这是中国数学的伟大成就.某小学教师为帮助同学们了解“祖率”,让同学们把小数点后的7位数字1,4,1,5,9,2,6进行随机排列,整数部分3不变,那么可以得到小于3.14的不同数字的个数有()A.240B.360C.600D.72022.(2023•日喀则市模拟)某国际高峰论坛会议中,组委会要从5个国内媒体团和3个国外媒体团中选出3个媒体团进行提问,要求这三个媒体团中既有国内媒体团又有国外媒体团,每个媒体团提问一次,且国内媒体团不能连续提问,则不同的提问方式的种数为()A.150B.90C.48D.3623.(2023•平定县校级模拟)中国空间站的主体结构包括天和核心实验舱、问天实验舱和梦天实验舱,假设空间站要安排甲、乙等5名航天员开展实验,三舱中每个舱至少一人至多二人,则甲乙不在同一实验舱的种数有()A.60B.66C.72D.8024.(2023•江西模拟)中国空间站(ChinaSpaceStation)的主体结构包括天和核心舱、问天实验舱和梦天资料整理【淘宝店铺:向阳百分百】实验舱.2022年10月31日15:37分,我国将“梦天实验舱”成功送上太空,完成了最后一个关键部分的发射,“梦天实验舱”也和“天和核心舱”按照计划成功对接,成为“T”字形架构,我国成功将中国空间站建设完毕.2023年,中国空间站将正式进入运营阶段.假设空间站要安排甲、乙等6名航天员开展实验,三舱中每个舱至少一人至多三人,则不同的安排方法有()A.450种B.72种C.90种D.360种25.(2023•河北模拟)中国共产党第二十次全国代表大会于2022年10月在北京石开.会议期间,5男3女共8位代表相约在人民大会堂前站成一排合影,若女代表中恰有2人相邻,且男代表甲不站在两端,则不同的站位方法共有()A.7920种B.9360种C.15840种D.18720种26.(2023•香坊区校级三模)“第二课堂”是哈九中多样化课程的典型代表,旨在进一步培养学生的人文底蕴和科学精神,为继续满足同学们不同兴趣爱好,美育中心精心准备了大家非常喜爱的中华文化传承系列的第二课堂活动课:陶艺,拓印,扎染,创意陶盆,壁挂,剪纸六个项目供同学们选学,则甲、乙、丙、丁这4名学生至少有3名学生所选的课全不相同的方法共有()A.135种B.720种C.1080种D.1800种27.(2023•武威模拟)将8个人分成三组,其中一组由2人组成,另外两组都由3人组成,则不同的分组方法种数为.28.(2023•武昌区校级模拟)已知有L,M,S三种尺寸的检测样品盒,其中每个L盒至多放置10支完全相同的样品,且L盒至少比M盒多2支样品,M盒至少比S盒多2只样品,则不同的放置方法共有种.(注:L,M,S不可为空盒)29.(2023•沙坪坝区校级模拟)某班级计划安排学号为1~9的九名同学中的某5位,分别担任周一至周五的值日生,要求学号为奇数的同学不能安排

1 / 11
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功