一次函数专题复习考点归纳+经典例题+练习

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1一次函数知识点复习与考点总结考点1:一次函数的概念.相关知识:一次函数是形如ykxb(k、b为常数,且0k)的函数,特别的当0b时函数为)0(kkxy,叫正比例函数.1、已知一次函数kxky)1(+3,则k=.2、函数nmxmyn12)2(,当m=,n=时为正比例函数;当m=,n时为一次函数.考点2:一次函数图象与系数相关知识:一次函数)0(kbkxy的图象是一条直线,图象位置由k、b确定,0k直线要经过一、三象限,0k直线必经过二、四象限,0b直线与y轴的交点在正半轴上,0b直线与y轴的交点在负半轴上.1.直线y=x-1的图像经过象限是()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限2.一次函数y=6x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限3.一次函数y=3x+2的图象不经过第象限.4.一次函数2yx的图象大致是()5.关于x的一次函数y=kx+k2+1的图像可能是()6.已知一次函数y=x+b的图像经过一、二、三象限,则b的值可以是().A.-2B.-1C.0D.27.若一次函数mxmy23)12(的图像经过一、二、四象限,则m的取值范围2是.8.已知一次函数y=mx+n-2的图像如图所示,则m、n的取值范围是()A.m>0,n<2B.m>0,n>2C.m<0,n<2D.m<0,n>29.已知关于x的一次函数ymxn的图象如图所示,则2||nmm可化简为____.10.如果一次函数y=4x+b的图像经过第一、三、四象限,那么b的取值范围是__。考点3:一次函数的增减性相关知识:一次函数)0(kbkxy,当0k时,y随x的增大而增大,当0k时,y随x的增大而减小.规律总结:从图象上看只要图象经过一、三象限,y随x的增大而增大,经过二、四象限,y随x的增大而减小.1.写出一个具体的y随x的增大而减小的一次函数解析式__2.一次函数y=-2x+3中,y的值随x值增大而_______.(填“增大”或“减小”)3.已知关于x的一次函数y=kx+4k-2(k≠0).若其图象经过原点,则k=_____;若y随x的增大而减小,则k的取值范围是________.4.若一次函数22xmy的函数值y随x的增大而减小,则m的取值范围是()A.0mB.0mC.2mD.2m5.(2011内蒙古赤峰)已知点A(-5,a),B(4,b)在直线y=-3x+2上,则ab。(填“>”、“<”或“=”号)6.当实数x的取值使得x-2有意义时,函数y=4x+1中y的取值范围是().A.y≥-7B.y≥9C.y>9D.y≤97.已知一次函数的图象经过点(0,1),且满足y随x增大而增大,则该一次函数的解析式可以为_________________(写出一个即可).考点4:函数图象经过点的含义3相关知识:函数图象上的点是由适合函数解析式的一对x、y的值组成的,因此,若已知一个点在函数图象上,那么以这个点的横坐标代x,纵坐标代y,方程成立。1.已知直线ykxb经过点(,3)k和(1,)k,则k的值为().A.3B.3C.2D.22.坐标平面上,若点(3,b)在方程式923xy的图形上,则b值为何?A.-1B.2C.3D.93.一次函数y=2x-1的图象经过点(a,3),则a=.4.在平面直角坐标系xOy中,点P(2,a)在正比例函数12yx的图象上,则点Q(35aa,)位于第_____象限.5.直线y=kx-1一定经过点().A.(1,0)B.(1,k)C.(0,k)D.(0,-1)7.如图所示的坐标平面上,有一条通过点(-3,-2)的直线L。若四点(-2,a)、(0,b)、(c,0)、(d,-1)在L上,则下列数值的判断,何者正确?()A.a=3B。b>-2C。c<-3D。d=2考点5:函数图象与方程(组)相关知识:两个函数图象的交点坐标就是两个解析式组成的方程组的解。1.点A,B,C,D的坐标如图,求直线AB与直线CD的交点坐标.2.如表1给出了直线l1上部分点(x,y)的坐标值,表2给出了直线l2上部分(x,y)的坐标值.那么直线l1和直线l2交点坐标为_____.考点5:图象的平移表1表24xyBAOx1.在平面直角坐标系中,把直线y=x向左平移一个单位长度后,其直线解析式为()A.y=x+1B.y=x-1C.y=xD.y=x-22.将直线2yx向右平移1个单位后所得图象对应的函数解析式为()A.21yxB.22yxC.21yxD.22yx3.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为()A.4B.8C.16D.82考点6:函数图象与不等式(组)相关知识:函数图象上的点是由适合函数解析式的一对x、y的值组成的(x、y),x的值是点的横坐标,纵坐标就是与这个x的值相对应的y的值,因此,观察x或y的值就是看函数图象上点的横、纵坐标的值,比较函数值的大小就是比较同一个x的对应点的纵坐标的大小,也就是函数图象上的点的位置的高低。1.如图所示,函数xy1和34312xy的图象相交于(-1,1),(2,2)两点.当21yy时,x的取值范围是()A.x<-1B.—1<x<2C.x>2D.x<-1或x>22.已知一次函数3kxy的图象如图所示,则不等式03kx的解集是。3.(2011吉林长春)如图,一次函数0ykxbk的图象经过点A.当3y时,x的ABCOyx5取值范围是.4.(2011青海西宁)如图,直线y=kx+b经过A(-1,1)和B(-7,0)两点,则不等式0<kx+b<-x的解集为_.考点7:一次函数解析式的确定常见题型归类第一种情况:不已知函数类型(不可用待定系数法),通过寻找题目中隐含的自变量和函数变量之间的数量关系,建立函数解析式。(见前面函数解析式的确定)1.已知y+m与x+n成正比例(m,n为常数)。(1)试说明y是x的一次函数(2)当x=-3时,y=5,当x=2时,y=2,求y与x之间的函数关系式。2.已知Y与X成正比例,Z与X成正比例,当Z=3时,Y=-1;当X=2/3时,Z=4,则Y与X的函数关系式为?第二种情况:已知函数是一次函数(直接或间接),采用待定系数法。(已知是一次函数或已知解析式形式ykxb或已知函数图象是直线都是直接或间接已知了一次函数)一、定义型一次函数的定义:形如ykxb,k、b为常数,且k≠0。二.平移型两条直线1l:11ykxb;2l:22ykxb。当12kk,12bb时,1l∥2l,解决问题时要抓住平行的直线k值相同这一特征。三.两点型从几何的角度来看,“两点确定一条直线”,所以两个点的坐标确定直线的解析式;从代数的角度来说,一次函数的解析式ykxb中含两个待定系数k和b,所以两个方程确定两个待定系数,因此想方设法找到两个点的坐标是解决问题的关键。解题策略:想方设法通过各种途径找到两个点的坐标,代入函数解析式中用待定系数法求出待定系数从而求出函数解析式。这类问题是见得最多的问题。四、探索型不直接已知函数类型,但可通过探索知其类型,再用待定系数法求解析式1.如图,直线l过A、B两点,A(0,1),B(1,0),则直线l的解析式为.62.已知一次函数y=kx+b的图像经过两点A(1,1),B(2,-1),求这个函数的解析式.1.一个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是()2.设min{x,y}表示x,y两个数中的最小值,例如min{0,2}=0,min{12,8}=8,则关于x的函数y=min{2x,x+2},y可以表示为()A.2222xxyxxB.2222xxyxxC.y=2xD.y=x+25.已知:一次函数ykxb的图象经过M(0,2),(1,3)两点.(l)求k、b的值;(2)若一次函数ykxb的图象与x轴的交点为A(a,0),求a的值.6.如图,在平面直角坐标系中,A、B均在边长为1的正方形网格格点上.(1)求线段AB所在直线的函数解析式,并写出当02y时,自变量x的取值范围;(2)将线段AB绕点B逆时针旋转90o,得到线段BC,请画出线段BC.若直线BC的函数解析式为ykxb,则y随x的增大而(填“增大”或“减小”).考点8:与一次函数有关的几何探究问题.1.如图6,在平面直角坐标系中,直线4:43lyx分别交x轴、y轴于点AB、,将7AOB△绕点O顺时针旋转90°后得到AOB△.(1)求直线AB的解析式;(2)若直线AB与直线l相交于点C,求ABC△的面积.2.(2010绍兴)在平面直角坐标系中,一次函数的图象与坐标轴围成的三角形,叫做此一次函数的坐标三角形.例如,图中的一次函数的图象与x,y轴分别交于点A,B,则△OAB为此函数的坐标三角形.(1)求函数y=43x+3的坐标三角形的三条边长;(2)若函数y=43x+b(b为常数)的坐标三角形周长为16,求此三角形面积.3.(2009年莆田)如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,MNR△的面积为y,如果y关于x的函数图象如图2所示,则当9x时,点R应运动到()A.N处B.P处C.Q处D.M处4.(2011湖南衡阳)如图所示,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图所示,那么△ABC的面积是.考点9:一次函数图象信息题(从图像中读取信息。利用信息解题)QPRMN(图1)(图2)49yxOAyOBx图6CAyxOlAB8思路点拨::一次函数在实际中的应用是先根据条件求出一次函数的解析式,然后根据一次函数的性质解决相关问题.规律总结:先求一次函数解析式,再利用一次函数的性质,对于图象不是一条线而是由多条线段组成的,要根据函数的自变量的取值范围分别求.1.甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备后,乙组的工作效率是原来的2倍.两组各自加工数量y(件)与时间x(时)之间的函数图象如图所示.(1)求甲组加工零件的数量y与时间x之间的函数关系式.(2)求乙组加工零件总量a的值.(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?2.小李师傅驾车到某地办事,汽车出发前油箱中有油50升,行驶若干小时后,途中在加油站加油若干升,油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.(1)请问汽车行驶多少小时后加油,中途加油多少升?(2)求加油前油箱剩余油量y与行驶时间t的函数关系式;(3)已知加油前后汽车都以70千米/小时的速度匀速行驶,如果加油站距目的地210千米,要到达目的地,问油箱中的油是否够用?请说明理由.考点10:一次函数的实际应用题93.(2011江苏泰州)小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min的速度从邮局沿同一条道路步行回家,小明在邮局停留2min后沿原路以原速返回,设他们出发后经过tmin时,小明与家之间的距离为S1m,小明爸爸与家之间的距离为S2m,,图中折线OABD,线段EF分别是表示S1、S2与t之间函数关系的图像.(1)求S2与t之间的函数关系式:(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?ECOt(min)s(m)AB12D2400F104.鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值:[注:“鞋码”是表示鞋子大小

1 / 12
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功