1.(2014•山东)如图,四棱锥P﹣ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分别为线段AD,PC的中点.(Ⅰ)求证:AP∥平面BEF;(Ⅱ)求证:BE⊥平面PAC.解答:证明:(Ⅰ)连接CE,则∵AD∥BC,BC=AD,E为线段AD的中点,∴四边形ABCE是平行四边形,BCDE是平行四边形,设AC∩BE=O,连接OF,则O是AC的中点,∵F为线段PC的中点,∴PA∥OF,∵PA⊄平面BEF,OF⊂平面BEF,∴AP∥平面BEF;(Ⅱ)∵BCDE是平行四边形,∴BE∥CD,∵AP⊥平面PCD,CD⊂平面PCD,∴AP⊥CD,∴BE⊥AP,∵AB=BC,四边形ABCE是平行四边形,∴四边形ABCE是菱形,∴BE⊥AC,∵AP∩AC=A,∴BE⊥平面PAC.3.(2014•湖北)在四棱锥P﹣ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.(Ⅰ)求证:BE∥平面PAD;(Ⅱ)求证:BC⊥平面PBD;(Ⅲ)设Q为侧棱PC上一点,,试确定λ的值,使得二面角Q﹣BD﹣P为45°.©2010-2014菁优网2解答:解:(Ⅰ)取PD的中点F,连接EF,AF,∵E为PC中点,∴EF∥CD,且,在梯形ABCD中,AB∥CD,AB=1,∴EF∥AB,EF=AB,∴四边形ABEF为平行四边形,∴BE∥AF,∵BE⊄平面PAD,AF⊂平面PAD,∴BE∥平面PAD.(4分)(Ⅱ)∵平面PCD⊥底面ABCD,PD⊥CD,∴PD⊥平面ABCD,∴PD⊥AD.(5分)如图,以D为原点建立空间直角坐标系D﹣xyz.则A(1,0,0),B(1,1,0),C(0,2,0),P(0,0,1).(6分),,∴,BC⊥DB,(8分)又由PD⊥平面ABCD,可得PD⊥BC,∴BC⊥平面PBD.(9分)(Ⅲ)由(Ⅱ)知,平面PBD的法向量为,(10分)∵,,且λ∈(0,1)∴Q(0,2λ,1﹣λ),(11分)设平面QBD的法向量为=(a,b,c),,,由,,得,∴,(12分)∴,(13分)因λ∈(0,1),解得.(14分)©2010-2014菁优网34.(2014•江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.解答:证明:(1)∵D、E为PC、AC的中点,∴DE∥PA,又∵PA⊄平面DEF,DE⊂平面DEF,∴PA∥平面DEF;(2)∵D、E为PC、AC的中点,∴DE=PA=3;又∵E、F为AC、AB的中点,∴EF=BC=4;∴DE2+EF2=DF2,∴∠DEF=90°,∴DE⊥EF;∵DE∥PA,PA⊥AC,∴DE⊥AC;∵AC∩EF=E,∴DE⊥平面ABC;∵DE⊂平面BDE,∴平面BDE⊥平面ABC.13.(2012•江苏)如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.©2010-2014菁优网4解答:解:(1)∵三棱柱ABC﹣A1B1C1是直三棱柱,∴CC1⊥平面ABC,∵AD⊂平面ABC,∴AD⊥CC1又∵AD⊥DE,DE、CC1是平面BCC1B1内的相交直线∴AD⊥平面BCC1B1,∵AD⊂平面ADE∴平面ADE⊥平面BCC1B1;(2)∵△A1B1C1中,A1B1=A1C1,F为B1C1的中点∴A1F⊥B1C1,∵CC1⊥平面A1B1C1,A1F⊂平面A1B1C1,∴A1F⊥CC1又∵B1C1、CC1是平面BCC1B1内的相交直线∴A1F⊥平面BCC1B1又∵AD⊥平面BCC1B1,∴A1F∥AD∵A1F⊄平面ADE,AD⊂平面ADE,∴直线A1F∥平面ADE.16.(2010•深圳模拟)如图,在四棱锥S﹣ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E、F分别是AB、SC的中点(1)求证:EF∥平面SAD(2)设SD=2CD,求二面角A﹣EF﹣D的大小.解答:(1)如图,建立空间直角坐标系D﹣xyz.设A(a,0,0),S(0,0,b),则B(a,a,0),C(0,a,0),,.©2010-2014菁优网5取SD的中点,则.平面SAD,EF⊄平面SAD,所以EF∥平面SAD.(2)不妨设A(1,0,0),则B(1,1,0),C(0,1,0),S(0,0,2),,.EF中点,,,又,,所以向量和的夹角等于二面角A﹣EF﹣D的平面角..所以二面角A﹣EF﹣D的大小为.