1/25智能制造技术的发展【最新5篇】智能制造技术的发展【第一篇】21世纪以来,世界经济发展迅速,人们开始走向智能化的时代,互联网技术、人机交互技术以及各种各样的智能设备充斥着我们的日常生活,这不仅使我们的生活越来越有效率,也对制造企业做出了很大贡献。纵观当今社会,智能制造技术无疑是世界制造业未来发展的重要方向之一。所谓智能制造技术,是指在现代传感技术、网络技术、自动化技术、拟人化智能技术等先进技术的基础上,通过智能化的感知、人机交互、决策和执行技术,实现设计过程、制造过程和制造装备智能化,是信息技术和智能技术与装备制造过程技术的深度融合与集成。接下来,我们谈谈我国的智能制造技术发展现状以及存在的一些问题。一.我国智能制造技术的发展现状我国对的研究开始于20世纪80年代末。在最初的研究中在智能制造技术方面取得了一些成果,而进入21世纪以来的十年当中智能制造在我国迅速发展,在许多重点项目方面取得成果,智能制造相关产业也初具规模。我国已取得了一批相关的基础研究成果和长期制约我国产业发展的智能制造技术,如机器人技术、感知技术、工业通信网络技术、控制技术、可靠性技术、机械制造工艺技术、数控技术与数字化制造复杂制造2/25系统、智能信息处理技术等;攻克了一批长期严重依赖并影响我国产业安全的核心高端装备,如盾构机、自动化控制系统、高端加工中心等。建设了一批相关的国家重点实验室、国家工程技术研究中心、国家级企业技术中心等研发基地,培养了一大批长期从事相关技术研究开发工作的高技术人才。随着信息技术与先进制造技术的高速发展,我国智能制造装备的发展深度和广度日益提升,以新型传感器、智能控制系统、工业机器人、自动化成套生产线为代表的智能制造装备产业体系已经初步形成,一批具有自主知识产权的智能制造装备也实现了突破。二.我国智能制造技术存在的问题近年来,我国智能制造技术及其产业化发展迅速,并取得了较为显著的成效。然而,制约我国智能制造快速发展的突出矛盾和问题依然存在,主要表现在以下四个方面。1.智能制造基础理论和技术体系建设滞后智能制造的发展侧重技术追踪和技术引进,而基础研究能力相对不足,对引进技术的消化吸收力度不够,原始创新匮乏。控制系统、系统软件等关键技术环节薄弱,技术体系不够完整。先进技术重点前沿领域发展滞后,在先进材料、堆积制造等方面差距还在不断扩大。2.智能制造中长期发展战略缺失金融危机以来,工业化发达国家纷纷将包括智能制造在内的先进制造业发展上升为国家战略。尽管我国也一直重视智能3/25制造的发展,及时发布了《智能制造装备产业“十二五”发展规划》和《智能制造科技发展“十二五”专项规划》,但智能制造的总体发展战略依然尚待明确,技术路线图还不清晰,国家层面对智能制造发展的协调和管理尚待完善。3.高端制造装备对外依存度较高目前我国智能装备难以满足制造业发展的需求,我国90%的工业机器人、80%的集成电路芯片制造装备、40%的大型石化装备、70%的汽车制造关键设备、核电等重大工程的自动化成套控制系统及先进集约化农业装备严重依赖进口。船舶电子产品本土化率还不到10%。关键技术自给率低,主要体现在缺乏先进的传感器等基础部件,精密测量技术、智能控制技术、智能化嵌入式软件等先进技术对外依赖度高。4.关键智能制造技术及核心基础部件主要依赖进口构成智能制造装备或实现制造过程智能化的重要基础技术和关键零部件主要依赖进口,如新型传感器等感知和在线分析技术、典型控制系统与工业网络技术、高性能液压件与气动原件、高速精密轴承、大功率变频技术、特种执行机构等。许多重要装备和制造过程尚未掌握系统设计与核心制造技术,如精密工作母机设计制造基础技术、百万吨乙烯等大型石化的设计技术和工艺包等均未现国产化。几乎所有高端装备的核心控制技术严重依赖进口。综上所述,我国的智能制造技术还存在着一些问题,需要我们去挖掘更有效的方法来解决,我们更应该着重于思路的创4/25新性,与国际化接轨。目前,世界各国都对智能制造系统进行了各种研究,未来智能制造技术也会不断地发展。目前,以3D打印为代表的“数字化”制造技术已经崭露头角,未来智能制造技术创新及应用也会贯穿制造业全过程,世界范围内智能制造国家战略将会空前高涨,这对我国来说,无疑是一项挑战也是巨大的动力。智能制造技术的发展【第二篇】摘要:智能制造已经成为中国制造业的主攻方向.面向机械制造企业提出五级智能制造能力成熟度模型,从基础资源能力、业务活动集成能力、信息融合使用能力以及持续改进能力四个方面构建了智能制造能力成熟度评价指标体系,并采用基于层次分析法的二级模糊综合评判法进行企业智能制造实施能力的量化测评,从而为企业客观诊断自身实施智能制造的能力提供理论和方法支持.关键词:智能制造;能力成熟度;等级;评价指标;模糊综合评判中图分类号:TH186文献标志码:A文章编号:2095-2945(2020)02-0055-03Abstract:IntelligentmanufacturinghasbecomethestrategictrendofChina'(IMCM)modelisproposedformechanicalmanufacturingenterprises,5/25andanIMCMevaluationindexsystemisconstructedfromfouraspects:basicresourcecapability,businessactivityintegrationcapability,inf,basedontheestablishedIMCMevaluationindexes,atwo-levelfuzzycomprehensiveevaluationmethodbasedonanalytichierarchyprocessisappliedtomakeaquantitativeassesentofthecapabilitytoimplementintelligentmanufacturing,therebyprovidingtheoreticalandmethodologicalsupportformanufacturingenterprisestoobjectivelydiagnosetheirownintelligentmanufacturingimplementationability.Keywords:intelligentmanufacturing;capabilitymaturity;level;evaluationindex;fuzzycomprehensiveevaluation1概述目前,全球产业竞争格局正在发生重大调整,新一代信息技术与制造业深度融合,工业发达国家都在加大科技创新力度,例如德国和美国相继提出了“工业”和“工业互联网”战略[1].与此同时,一些发展中国家也在加快谋划和布局,积极参与全球产业再分工,承接发达国家产业及资本转移.中国制造业面临发达国家和其他发展中国家“双向挤压”的严峻挑战,必须加紧战略部署,抢占制造业新一轮竞争制高点,化挑战为转型升级和创新发展的机遇.为此,中国政府提出了《中国制造2025》发展战略,并把智能制造作为信息技术和制造技术融合6/25发展的主攻方向[2].然而,目前国内外对智能制造的内涵尚未形成统一认识.以“工业”、“工业互联网”等为代表的智能制造模式都是基于发达国家已有的工业化水平提出的,而中国大多数机械制造企业在人员素质、自动化水平、管理水平等方面与发达国家存在较大差距.因此,在制造业新发展形势下,国内机械制造企业转型实施智能制造应先对自身的技术、管理水平进行综合诊断,然后结合企业自身实际情况实施智能制造,并逐步实现完善.本文采用《中国机械工程技术路线图》中对智能制造的定义,认为智能制造是研究制造活动中的信息感知与分析、知识表达与学习、智能决策与执行的一门综合交叉技术[3].相应地,智能制造能力成熟度模型描述和反映了企业智能制造的核心要素、特征以及水平演进的路径.制造成熟度等级的概念最早由美国提出并用于军用领域,后推广应用至民用领域来管控技术及风险[4].目前,国内企业为推行智能制造,围绕智能制造能力成熟度评价已经开展了相关探索和研究,例如:张蓉君等[5]提出了智能制造评价指数标准,从“制造维”和“智能维”对河南省41家调研企业的智能制造能力进行了分析,指出河南省企业在智能维方面存在较大发展空间;于秀明等[6]从制造工程、制造保障以及智能提升三个维度综合考虑智能制造的关键特征及要素,提出了整体成熟度和单项能力成熟度两种模型,然而并未涉及成熟度等级的确定方法;中国电子技术标准化研究院主导研究,发布了《智能7/25制造能力成熟度模型白皮書》,尽管为企业评价其智能制造综合水平提供了可参考的指导框架,但其在机械制造企业的适用性目前尚未充分验证[7].因此,借鉴现有研究成果,本文提出面向机械制造企业的智能制造能力成熟度等级模型及评价指标体系,并利用基于层次分析法的二级模糊综合评判法评估企业的智能制造能力成熟度,从而为企业诊断自身智能制造能力提供理论和方法支持.2智能制造能力成熟度等级3智能制造能力成熟度评价指标体系广义的制造过程是面向产品全生命周期的一系列生产活动集合,包括设计、生产、物流、销售、服务等.显然,成熟的智能制造环境下,制造过程的各项业务活动在相应基础资源(涉及人、财、物等)的支撑下应当是充分集成和联动的.相应地,在企业业务集成与联动过程中,需要充分利用信息技术,强化信息融合使用能力.因此,本文从企业的基础资源能力、业务活动集成能力、信息融合使用能力以及持续改进能力四个方面来综合评价企业的智能制造能力成熟度.进一步,为了确定各能力域影响因子,采用企业调研与问卷调查相结合的方式进行:首先在问卷设计中尽可能全面地列举相关影响因子,然后深入不同机械制造企业,由工位、工段、生产线、车间、工厂、企业不同管理层次的人员确认各能力域的影响因子,对于累计认同度达到80%以上的因子即认为是关键因子[9],进而建立如图1所示的智能制造能力成熟度评价指标体系.8/254智能制造能力成熟度评估建立智能制造能力成熟度评价指标体系的目的是为具体企业量化测评智能制造实施能力提供指导依据.借鉴现有决策理论技术与方法,本文利用基于层次分析法的二级模糊综合评判法评估制造企业的智能制造能力成熟度.由图1可知,评价指标难以全部进行量化计算评价.针对难以量化计算的评价指标可以采用百分制打分,进而采用模糊数进行指标量化值的评价;对于能够量化计算的评价指标,同样可以采用模糊数进行指标量化值的评价,从而真实反映评价指标间的相对重要性程度.评估过程如图2所示,主要分两阶段进行,阶段一主要利用层次分析法获取指标体系中同层同类指标的权重;阶段二主要结合阶段一确定的指标权重,利用模糊综合评判对智能制造能力成熟度影响因子做出综合评判,进而确定智能制造能力成熟度级别,评估过程的具体实施细节可以参考文献[9].此外,由于本文提出的智能制造能力成熟度级别分为5级,所以利用基于层次分析法的二级模糊综合评判法输出的结果LIMCM进行智能制造能力成熟度级别(GIMCM)判定的准则为:5结束语面向机械制造企业,提出了五级智能制造能力成熟度模型,并从基础资源能力、业务活动集成能力、信息融合使用能力以及持续改进能力四个方面出发构建了智能制造能力成熟度评价指标体系,进而采用基于层次分析法的二级模糊综合评判法9/25进行企业智能制造实施能力的客观、量化测评.未来将进一步细化评价指标体系,并进行机械制造企业智能制造能力成熟度的快速评价方法研究.参考文献:[1]延建林,孔德婧.解析“工业互联网”与“工业”及其对中国制造业发展的启示[J].中国工程科学,2015,17(7):141-144.[2]周济.智能制造——“中国制造2025”的主攻方向[J].中国机械工程,2015,26(17):2273-2284.[3]中国机械工程学会.中国机械工程技术路线图[M].北京:中国科学技术出版社,2011.[4]高原,高彬彬,董雅萍.