圆柱的表面积导入:同学们看熊大皱着眉头,满头大汗,好像遇到难题了,我们一起来看一看,原来过两天就是熊二的生日,熊大挑选了一个精美的生日礼物送给熊二同学们请看大屏幕,熊大的礼物是什么形状的呀?对,圆柱体的,可是买完礼物他却犯了难,他想给这个礼物包上一层精美的包装纸。他不知道该买多大的包装纸,同学们,你们愿意帮帮他吗?你们真是一群乐于助人的好孩子,那谁来说一说我们该如何帮助他呢?请你来说。你对这个问题理解的可真透彻,也就是买个能把圆柱外表的表面全部包起来的包装纸就可以了,也就是想知道需要多大的包装纸,就是求?对圆柱的表面积。那圆柱的表面积我们该如何计算呢?看同学们既疑惑又好奇的表情,这节课就让我们一起走进圆柱的世界,去探究圆柱的表面积计算方法。上节课我们一起认识了圆柱,谁能说一说圆柱有哪些特点?请你来说,说的非常全面,请坐圆柱一共有三个面,两个完全相同的底面和一个侧面。谁还有补充,请你来说补充的非常完整。圆柱沿着它的一条高剪开,它的侧面就是一个长方形。同学们可真棒,对学过的知识都掌握的这么扎实,那请同学们带同学去袋中,拿出我们时间准备好的圆柱体纸盒。和同桌之间互相只一直摸一摸圆柱的表面积是指的哪些部分呢?谁想大家子一直请你来说,是的,非常准确,请坐。圆柱的表面积指的是两个底面加一个侧面的面积。在前面的学习中,我们已经知道了圆柱的展开图,同学们再把手中的圆柱体纸盒动手沿着它的一条高剪开,并仔细观察展开前和展开后,他们什么变了,什么没有变。圆柱的侧面把长方形的长与宽与转化前圆柱的以面半径和高有什么关系?你还有哪些发现?带着这些问题先独立思考,再小组合作,老师相信小组的力量是强大的,讨论完成以端正的坐姿来示意老师看哪个小组的发现又多又好,开始老师看同学们都已经坐端正了。哪位同学愿意向大家分享一下你们小组的讨论成果,老师看叶渡的同学手举的像小树林一样,那就一组三号同学请你来说。观察的非常细致,其转化前和转换和它同一个立体图形转化为平面图形,但是转化前圆柱的表面积就等于转化后的平面图形的面积。其他同学还有别的发现吗?请你来说。非常棒,请坐。过我们知道圆柱的展开图,发现圆柱的表面积就等于圆柱的侧面积加两个底面的面积。那我们一起来看一看,圆柱的侧面积,你会计算吗?谁还有别的发现呢?请你来说,你真是一个善于思考的好孩子,计算圆柱的侧面积,实际上就是求圆柱侧面所展开的图形,长方形的面积。那我们一起来看一看长方形的长与宽与圆柱的底面半径和高有怎样的关系呢?谁来说一说?请你来说,说的非常准确,请多,我们圆柱展开,侧面的长方形的长,其实就是展开前圆柱底面的周长。而展开后长方形的高就是圆柱的高。同学们,你们都发现了吗?那经过这些等量关系,你又能得到怎样的结论呢?请你来说多么了不起的发现同学们正好生送给这位同学,通过这些等量关系,我们就可以求出圆柱侧面积,就等于底面周长乘高,我们知道底面的周长就等于2πr×h。那侧面接我们求出来了两个底面的面积又该如何求呢?谁来所以说请你来说,小脑袋非常灵活,挺多两个底面,我们知道是完全相同的两个圆,先求出一个圆,再乘二就可以了,一个圆的面积算对πr的平方×2,也就是2πr的平方。那经过我们计算出圆柱的侧面积和两个底面的面积,所以圆柱的表面积就等于,2πrh+2πr的平方。同学们赶紧在和同桌之间互相读一读,记一记。看来我们要计算一个圆柱的表面积,只要知道什么就可以求出来的呢?对呀,只要知道底面半径和高,就可以求出圆柱的表面积。那再看一看这一道题,把一顶圆柱形厨师帽,高30cm,冒顶直径是20cm,做这样一顶帽子至少需要多少平方厘米的材料呢?同学们赶紧来翻一转,需要多少平方米的材料,其实就是求啊。圆柱的表面积,同学们同意吗?看来有的同学还有不同的想法来请你来说。说的非常棒,请坐,因为我们厨师帽只有一个底面,所以只需要求出一个底面和一个侧面就是需要的面料,同学们赶紧来计算一下吧。老师看,同学们都已经完成了,谁来说一说你的计算过程?请你来说说的非常正确,那最后结果是啊,2198平方厘米,像这种实际使用的面料要比计算的结果多一些,所以这类问题我们往往用进一法取近似值。同学们可真棒,这么快就会用圆柱的表面积的知识解决实际问题了,那我们赶紧来帮熊大解决一下他的难题吧,谁来说一说你是如何计算的?请你来说说的非常棒,看来同学们对这节课的知识啊,掌握的非常扎实了。这节课我们通过独立思考,小组合作,