函数y=sin6(62x2+73x+14)的导数计算主要内容:本文主要用复合函数求导法则、链式求导法则以及取对数求导等方法,介绍计算函数y=sin6(62x2+73x+14)一阶和二阶导数的步骤。※.复合函数链式求导计算一阶导数由复合函数求导法则,对x求导有:dydx=6*sin2(62x2+73x+14)*cos(62x2+73x+14)*(62x2+73x+14)',=6*sin2(62x2+73x+14)*cos(62x2+73x+14)*(124x+73),=6(124x+73)*sin2(62x2+73x+14)*cos(62x2+73x+14).※.取对数求导计算一阶导数首先对方程两边取对数,有:lny=lnsin6(62x2+73x+14),lny=6lnsin(62x2+73x+14),方程两边同时对x求导,有:y'y=6[sin(62x2+73x+14)]'sin(62x2+73x+14),y'y=6[cos(62x2+73x+14)](124x+73)sin(62x2+73x+14),y'=sin6(62x2+73x+14)*6[cos(62x2+73x+14)](124x+73)sin(62x2+73x+14),y'=sin2(62x2+73x+14)*6[cos(62x2+73x+14)](124x+73),=6(124x+73)sin2(62x2+73x+14)*cos(62x2+73x+14).※.二阶导数计算本处根据函数特征,采取取对数计算导数,首先对函数两边同时取对数,有:lny'=ln6(124x+73)sin2(62x2+73x+14)*cos(62x2+73x+14),则:lny'=ln6+ln(124x+73)+5lnsin(62x2+73x+14)+lncos(62x2+73x+14),对方程两边同时对x再次求导,y''y'=124124x+73+5[sin(62x2+73x+14)]'sin(62x2+73x+14)+[cos(62x2+73x+14)]'cos(62x2+73x+14),=124124x+73+5cos(62x2+73x+14)(124x+73)sin(62x2+73x+14)-sin(62x2+73x+14)(124x+73)cos(62x2+73x+14)=124124x+73+5(124x+73)ctg(62x2+73x+14)-(124x+73)tan(62x2+73x+14),则:y''=6(124x+73)sin2(62x2+73x+14)*cos(62x2+73x+14)[124124x+73+5(124x+73)ctg(62x2+73x+14)-(124x+73)tan(62x2+73x+14)],=744sin2(62x2+73x+14)*cos(62x2+73x+14)+30(124x+73)2sin4(62x2+73x+14)*cos2(62x2+73x+14)-6(124x+73)2sin6(62x2+73x+14),=372sin4(62x2+73x+14)*sin(124x2+146x+28)+30(124x+73)2sin4(62x2+73x+14)*cos2(62x2+73x+14)-6(124x+73)2sin6(62x2+73x+14)。