※.函数的定义域∵121y=13-50x≥0,∴50x≤13,即:0≤x≤16950.则函数的定义域为:[0,16950].※.函数的单调性对方程两边同时对自变量x求导,得:50250x+121y'2121y=0,121y'121y=-5050x,y'=-50121*121y50x0即函数y在定义域上为单调减函数。当x=0时,ymax=169121;当x=16950时,ymin=0。则函数的值域为:[0,169121]。本题也可通过复合函数性质来判断函数单调性,因为50x+121y=13,所以121y=13-50x,又因为函数y1=50x为增函数,则取负号后为减函数,即f(121y)为减函数。※.函数的凸凹性∵y'=-50121*121y50x=-50121*12150*yx.∴y"=-50121*12150*(yx)'.=-50121*12150*x2yy'-y2xx=-50121*12150*-x2y(50121*12150*yx)-y2xx=50121*12150*x2y(50121*12150*yx)+y2xx0,所以函数y在定义域上为凹函数。※.函数的五点图x00.841.692.533.3850x06.489.1911.21313-50x136.523.811.80y1.3960.3510.110.020※.函数的示意图y(0,1.396)(0.84,0.351)(1.69,0.11)(3.38,0)x