全等三角形知识点总结及复习

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

博士教育李老师QQ22139184901全等三角形知识点总结及复习一、知识网络对应角相等性质对应边相等边边边SSS全等形全等三角形应用边角边SAS判定角边角ASA角角边AAS斜边、直角边HL作图角平分线性质与判定定理二、基础知识梳理(一)、基本概念1、“全等”的理解全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。同样我们把能够完全重合的两个三角形叫做全等三角形。全等三角形定义:能够完全重合的两个三角形称为全等三角形。(注:全等三角形是相似三角形中的特殊情况)当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。由此,可以得出:全等三角形的对应边相等,对应角相等。(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;(3)有公共边的,公共边一定是对应边;(4)有公共角的,角一定是对应角;(5)有对顶角的,对顶角一定是对应角;2、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等;3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。(2)两角和它们的夹边对应相等的两个三角形全等。(3)两角和其中一角的对边对应相等的两个三角形全等。(4)两边和它们的夹角对应相等的两个三角形全等。博士教育李老师QQ22139184902(5)斜边和一条直角边对应相等的两个直角三角形全等。4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上(二)灵活运用定理1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。3、要善于灵活选择适当的方法判定两个三角形全等。(1)已知条件中有两角对应相等,可找:①夹边相等(ASA)②任一组等角的对边相等(AAS)(2)已知条件中有两边对应相等,可找①夹角相等(SAS)②第三组边也相等(SSS)(3)已知条件中有一边一角对应相等,可找①任一组角相等(AAS或ASA)②夹等角的另一组边相等(SAS)(三)经典例题例1.已知:如图所示,AB=AC,,求证:.例2.如图所示,已知:AF=AE,AC=AD,CF与DE交于点B。求证:。例3.如图所示,AC=BD,AB=DC,求证:。博士教育李老师QQ22139184903例4.如图所示,,垂足分别为D、E,BE与CD相交于点O,且求证:BD=CE。例5:已知:如图,在四边形ABCD中,AC平分∠BAD、CE⊥AB于E,且∠B+∠D=180。求证:AE=AD+BE分析:从上面例题,可以看出,有时为了证明某两条线段和等于另一条线段,可以考虑“截长补短”的添加辅助线,本题是否仍可考虑这样“截长补短”的方法呢?由于AC是角平分线,所以在AE上截AF=AD,连结FC,可证出ADC≌AFC,问题就可以得到解决。证明(一):在AE上截取AF=AD,连结FC。在AFC和ADC中AFADACAC已作已知公共边12∴AFC≌ADC(边角边)∴∠AFC=∠D(全等三角形对应角相等)∵∠B+∠D=180(已知)∴∠B=∠EFC(等角的补角相等)在CEB和CEF中博士教育李老师QQ22139184904BEFCCEBCEFCECE已证已知公共边90∴CEB≌CEF(角角边)∴BE=EF∵AE=AF+EF∴AE=AD+BE(等量代换)证明(二):在线段EA上截EF=BE,连结FC(如右图)。小结:在几何证明过程中,如果现成的三角形不可以证明,则需要我们选出所需要的三角形,这就需要我们恰到好处的添加辅助线。(四)全等三角形复习练习题一、选择题1.如图,给出下列四组条件:①ABDEBCEFACDF,,;②ABDEBEBCEF,,;③BEBCEFCF,,;④ABDEACDFBE,,.其中,能使ABCDEF△≌△的条件共有()A.1组B.2组C.3组D.4组2.如图,DE,分别为ABC△的AC,BC边的中点,将此三角形沿DE折叠,使点C落在AB边上的点P处.若48CDE°,则APD等于()3.如图(四),点P是AB上任意一点,ABCABD,还应补充一个条件,才能推出APCAPD△≌△.从下列条件中补充一个条件,不一定能....推出APCAPD△≌△的是()A.BCBDB.ACADC.ACBADBD.CABDABA.42°B.48°C.52°D.58°1题图2题图4.如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是()(A)∠B=∠E,BC=EF(B)BC=EF,AC=DF(C)∠A=∠D,∠B=∠E(D)∠A=∠D,BC=EF5.如图,△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB于E,若AC=10cm,则△DBE的周长等于()A.10cmB.8cmC.6cmD.9cm6.如图所示,表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.1处B.2处C.3处D.4处CADPB图(四)博士教育李老师QQ221391849054题图5题图7.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A.带①去B.带②去C.带③去D.带①②③去8.如图,在RtABC△中,90B,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知10BAE,则C的度数为()A.30B.40C.50D.609.如图,ACBACB△≌△,BCB=30°,则ACA的度数为()A.20°B.30°C.35°D.40°10.如图,AC=AD,BC=BD,则有()A.AB垂直平分CDB.CD垂直平分AB1题图C.AB与CD互相垂直平分D.CD平分∠ACB8题图10题图11.尺规作图作AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA、OB于C、D,再分别以点C、D为圆心,以大于12CD长为半径画弧,两弧交于点P,作射线OP,由作法得OCPODP△≌△的根据是()A.SASB.ASAC.AASD.SSS12.如图,∠C=90°,AD平分∠BAC交BC于D,若BC=5cm,BD=3cm,则点D到AB的距离为()A.5cmB.3cmC.2cmD.不能确定13.如图,OP平分AOB,PAOA,PBOB,垂足分别为A,B.下列结论中不一定成立的是()A.PAPBB.PO平分APBC.OAOBD.AB垂直平分OP14.如图,已知ABAD,那么添加下列一个条件后,仍无法判定ABCADC△≌△的是()A.CBCDB.BACDAC∠∠C.BCADCA∠∠D.90BD∠∠11题图12题图ADCEB8题图ABCDEDCBA④①②③6题图7题图ABCDABCD14题图CABBAO13题图BAPODPCAB博士教育李老师QQ22139184906二、填空题1.如图,已知ADAB,DACBAE,要使ABC△≌ADE△,可补充的条件是(写出一个即可)_______________.2.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于D,DE⊥AB于E,且AB=5cm,则△DEB的周长为________3.如图,BACABD,请你添加一个条件:,使OCOD(只添一个即可).4.如图,在ΔABC中,∠C=90°∠ABC的平分线BD交AC于点D,若BD=10厘米,BC=8厘米,DC=6厘米,则点D到直线AB的距离是__________厘米。1题图2题图3题图4题图5.观察图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三角形有个.6.已知:如图,△OAD≌△OBC,且∠O=70°,∠C=25°,则∠AEB=________度.7如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE、AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.恒成立的结论有_______________________(把你认为正确的序号都填上)。8.如图所示,AB=AD,∠1=∠2,添加一个适当的条件,使△ABC≌△ADE,则需要添加的条件是________.6题图7题图8题图第1个第2个第3个ACEBDOABCDEDOCBABABCDEQPOBEDCA博士教育李老师QQ22139184907三、解答题1.如图,已知AB=AC,AD=AE,求证:BD=CE.2.如图,在ABC△中,40ABACBAC,°,分别以ABAC,为边作两个等腰直角三角形ABD和ACE,使90BADCAE°.(1)求DBC的度数;(2)求证:BDCE.3.如图,在△ABE中,AB=AE,AD=AC,∠BAD=∠EAC,BC、DE交于点O.求证:(1)△ABC≌△AED;(2)OB=OE.4.如图,D是等边△ABC的边AB上的一动点,以CD为一边向上作等边△EDC,连接AE,找出图中的一组全等三角形,并说明理由.OCEBDAEDCBAABDEC博士教育李老师QQ221391849085.如图,在△ABC和△DCB中,AB=DC,AC=DB,AC与DB交于点M.(1)求证:△ABC≌△DCB;(2)过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N,试判断线段BN与CN的数量关系,并证明你的结论.6.如图,四边形ABCD的对角线AC与BD相交于O点,12,34.求证:(1)ABCADC△≌△;(2)BODO.7.如图,在ABC△和ABD△中,现给出如下三个论断:①ADBC;②CD;③12.请选择其中两个论断为条件,另一个论断为结论,构造一个命题.(1)写出所有的真命题(写成“”形式,用序号表示):.(2)请选择一个真命题加以证明.你选择的真命题是:.证明:BCADMN21ACDBDCBAO1234博士教育李老师QQ221391849098.已知:如图,B、E、F、C四点在同一条直线上,AB=DC,BE=CF,∠B=∠C.求证:OA=OD.9.如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.10.如图,,ABACADBCDADAEABDAEDEF于点,,平分交于点,请你写出图中三.对.全等三角形,并选取其中一对加以证明.11.已知:如图,DC∥AB,且DC=AE,E为AB的中点,(1)求证:△AED≌△EBC.(2)观看图前,在不添辅助线的情况下,除△EBC外,请再写出两个与△AED的面积相等的三角形.(直接写出结果,不要求证明):OEDCBABDCFA郜EFEDCBA博士教育李老师QQ22139184901012.如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.(1)求证:MB=MD,ME=MF(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.13已知:如图A、D、C、B在同一直线上,AC=BD,AE=BF,CE=DF求证:(1)DF∥CE(2)DE=CFADFE14.如图,已知在△ABC中,BE、CF分别是AC、AB两条边上的高,在BE上截

1 / 12
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功