最新最全的数学资料尽在千人QQ群323031380微信公众号福建数学第1页(共17页)2016-2017学年浙江省宁波市余姚中学、镇海中学、慈溪中学、效实中学等九所重点学校高一(上)期末数学试卷一、选择题(本大题共8小题,每小题5分,共40分)1.(5分)已知实数集R,集合A={x|1<x<3},集合B={x|y=},则A∩(∁RB)=()A.{x|1<x≤2}B.{x|1<x<3}C.{x|2≤x<3}D.{x|1<x<2}2.(5分)下列函数中,既是偶函数又在区间(0,+∞)上单调递增的函数是()A.y=log2(x+3)B.y=2|x|+1C.y=﹣x2﹣1D.y=3﹣|x|3.(5分)已知,,,为非零向量,且+=,﹣=,则下列说法正确的个数为()(1)若||=||,则•=0;(2)若•=0,则||=||;(3)若||=||,则•=0;(4)若•=0,则||=||A.1B.2C.3D.44.(5分)三个数0.993.3,log3π,log20.8的大小关系为()A.log20.8<0.993.3<log3πB.log20.8<log3π<0.993.3C.0.993.3<log20.81<log3πD.log3π<0.993.3<log20.85.(5分)若角α∈(﹣π,﹣),则﹣=()A.﹣2tanαB.2tanαC.D.6.(5分)若函数y=f(x)的图象如图所示,则函数f(x)的解析式可以为()最新最全的数学资料尽在千人QQ群323031380微信公众号福建数学第2页(共17页)A.f(x)=B.f(x)=C.f(x)=D.f(x)=7.(5分)函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期为π,若其图象向左平移个单位后得到的函数为奇函数,则函数f(x)的图象()A.关于点(,0)对称B.关于点(﹣,0)对称C.关于直线x=﹣对称D.关于直线x=对称8.(5分)若,,均为单位向量,且•=0,(﹣)•(﹣)≤0,则|+﹣2|的最大值为()A.1B.C.﹣1D.2﹣二、填空题(本大题共7小题,多空每题6分,每空3分;单空每题4分,共36分)9.(6分)已知扇形的周长为30厘米,它的面积的最大值为;此时它的圆心角α=.10.(6分)已知向量=(4,5cosα),=(3,﹣4tanα),若∥,则sinα=;若⊥,则cos(﹣α)+sin(π+α)=.11.(6分)设函数f(x)=,若a=,则函数f(x)的值域为;若函数f(x)是R上的减函数,求实数a的取值范围为.12.(6分)在平行四边形ABCD中,E,F分别是CD和BC的中点,若=x+y(x,y∈R),则2x+y=;若=λ+μ(λ,μ∈R),则3λ+3μ=.13.(4分)已知函数f(x)=loga(0<a<1)为奇函数,当x∈(﹣2,2a)时,函数f(x)的值域是(﹣∞,1),则实数a+b=.14.(4分)函数f(x)=3sin(πx)﹣,x∈[﹣3,5]的所有零点之和为.15.(4分)已知函数f(x)=(a≠0,b∈R,c>0),g(x)=m[f(x)]2﹣n(mn>0),给出下列四个命题:最新最全的数学资料尽在千人QQ群323031380微信公众号福建数学第3页(共17页)①当b=0时,函数f(x)在(0,)上单调递增,在(,+∞)上单调递减;②函数f(x)的图象关于x轴上某点成中心对称;③存在实数p和q,使得p≤f(x)≤q对于任意的实数x恒成立;④关于x的方程g(x)=0的解集可能为{﹣3,﹣1,0,1}.则正确命题的序号为.三、解答题(本大题共5小题,共74分)16.(14分)已知集合A={x|m﹣1≤x≤2m+3},函数f(x)=lg(﹣x2+2x+8)的定义域为B.(1)当m=2时,求A∪B、(∁RA)∩B;(2)若A∩B=A,求实数m的取值范围.17.(15分)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的图象与y轴的交点为(0,1),它在y轴右侧的第一个最高点和最低点分别为(x0,2),(x0+,﹣2).(1)求函数y=f(x)的解析式和单调递增区间;(2)若当0≤x≤时,方程f(x)﹣m=0有两个不同的实数根α,β,试讨论α+β的值.18.(15分)已知函数f(x)=为偶函数.(1)求实数t值;(2)记集合E={y|y=f(x),x∈{1,2,3}},λ=lg22+lg2lg5+lg5﹣1,判断λ与E的关系;(3)当x∈[a,b](a>0,b>0)时,若函数f(x)的值域为[2﹣,2﹣],求实数a,b的值.19.(15分)如图,以坐标原点O为圆心的单位圆与x轴正半轴相交于点A,点B、P在单位圆上,且B(﹣,),∠AOB=α.(1)求的值;(2)设∠AOP=θ(≤θ≤),=+,四边形OAQP的面积为S,f(θ)最新最全的数学资料尽在千人QQ群323031380微信公众号福建数学第4页(共17页)=(•﹣)2+2S2﹣,求f(θ)的最值及此时θ的值.20.(15分)已知函数f(x)=(x﹣2)|x+a|(a∈R)(1)当a=1时,求函数f(x)的单调递增区间;(2)当x∈[﹣2,2]时,函数f(x)的最大值为g(a),求g(a)的表达式.最新最全的数学资料尽在千人QQ群323031380微信公众号福建数学第5页(共17页)2016-2017学年浙江省宁波市余姚中学、镇海中学、慈溪中学、效实中学等九所重点学校高一(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分)1.(5分)已知实数集R,集合A={x|1<x<3},集合B={x|y=},则A∩(∁RB)=()A.{x|1<x≤2}B.{x|1<x<3}C.{x|2≤x<3}D.{x|1<x<2}【解答】解:由x﹣2>0得x>2,则集合B={x|x>2},所以∁RB={x|x≤2},又集合A={x|1<x<3},则A∩(∁RB)={x|1<x≤2},故选A.2.(5分)下列函数中,既是偶函数又在区间(0,+∞)上单调递增的函数是()A.y=log2(x+3)B.y=2|x|+1C.y=﹣x2﹣1D.y=3﹣|x|【解答】解:对于A:函数不是偶函数,不合题意;对于B:函数是偶函数,且x>0时,y=2x+1递增;符合题意;对于C:函数是偶函数,在(0,+∞)递减,不合题意;对于D:函数是偶函数,在(0,+∞)递减,不合题意;故选:B.3.(5分)已知,,,为非零向量,且+=,﹣=,则下列说法正确的个数为()(1)若||=||,则•=0;最新最全的数学资料尽在千人QQ群323031380微信公众号福建数学第6页(共17页)(2)若•=0,则||=||;(3)若||=||,则•=0;(4)若•=0,则||=||A.1B.2C.3D.4【解答】解:,,,为非零向量,且+=,﹣=,(1)若||=||,可知以,为邻边的四边形的形状是菱形,则•=0;正确.(2)若•=0,可得:(+)(﹣)=0,即,则||=||;正确.(3)若||=||,可知以,为邻边的四边形的形状是矩形,则•=0;正确.(4)若•=0,可知以,为邻边的四边形的形状是矩形,则||=||,正确.故选:D.4.(5分)三个数0.993.3,log3π,log20.8的大小关系为()A.log20.8<0.993.3<log3πB.log20.8<log3π<0.993.3C.0.993.3<log20.81<log3πD.log3π<0.993.3<log20.8【解答】解:∵0<0.993.3<1,log3π>1,log20.8<0,∴log20.8<0.993.3<log3π,故选:A.5.(5分)若角α∈(﹣π,﹣),则﹣=()A.﹣2tanαB.2tanαC.D.【解答】解:∵α∈(﹣π,﹣),第三象限,∴<,由﹣最新最全的数学资料尽在千人QQ群323031380微信公众号福建数学第7页(共17页)=====.故选C.6.(5分)若函数y=f(x)的图象如图所示,则函数f(x)的解析式可以为()A.f(x)=B.f(x)=C.f(x)=D.f(x)=【解答】解:根据图象可知:函数是非奇非偶函数,∴B排除.函数图象在第三象限,x<0,∴D排除.根据指数函数和幂函数的单调性:2x的图象比x3的图象平缓,∴A对.故选A.7.(5分)函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期为π,若其图象向左平移个单位后得到的函数为奇函数,则函数f(x)的图象()A.关于点(,0)对称B.关于点(﹣,0)对称C.关于直线x=﹣对称D.关于直线x=对称【解答】解:∵函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期为=π,∴ω=2.若其图象向左平移个单位后得到的函数为y=sin[2(x+)+φ]=sin(2x++φ),再根据y=sin(2x++φ)为奇函数,∴+φ=kπ,k∈Z,即φ=kπ﹣,可取φ=﹣.最新最全的数学资料尽在千人QQ群323031380微信公众号福建数学第8页(共17页)故f(x)=sin(2x﹣).当x=时,f(x)=≠0,且f(x)=不是最值,故f(x)的图象不关于点(,0)对称,也不关于直线x=对称,故排除A、D;故x=﹣时,f(x)=sin=1,是函数的最大值,故f(x)的图象不关于点(﹣,0)对称,但关于直线x=对称,故选:C.8.(5分)若,,均为单位向量,且•=0,(﹣)•(﹣)≤0,则|+﹣2|的最大值为()A.1B.C.﹣1D.2﹣【解答】解:∵•=0,(﹣)•(﹣)≤0,∴﹣﹣•+≤0,∴(+)≥1,∴|+﹣2|2=(﹣)2+(﹣)2+2(﹣)•(﹣)=4﹣2(+)+2[﹣((+)+1]=6﹣4(+)≤6﹣4=2,∴|+﹣2|的最大值故选:B二、填空题(本大题共7小题,多空每题6分,每空3分;单空每题4分,共36分)9.(6分)已知扇形的周长为30厘米,它的面积的最大值为;此时它的圆心角α=2.【解答】解:设扇形的弧长为l,∵l+2R=30,最新最全的数学资料尽在千人QQ群323031380微信公众号福建数学第9页(共17页)∴S=lR=(30﹣2R)R=﹣R2+15R=﹣(R﹣)2+,∴当R=时,扇形有最大面积,此时l=30﹣2R=15,α=2,故答案为,2.10.(6分)已知向量=(4,5cosα),=(3,﹣4tanα),若∥,则sinα=﹣;若⊥,则cos(﹣α)+sin(π+α)=﹣.【解答】解:∵∥,∴15cosα+16tanα=0,15(1﹣sin2α)+16sinα=0,即15sin2α﹣16sinα﹣15=0,sinα∈[﹣1,1],解得sinα=﹣.∵⊥,∴•=12﹣20sinα=0,解得sinα=.则cos(﹣α)+sin(π+α)=﹣sinα﹣sinα=﹣,故答案为:﹣,﹣.11.(6分)设函数f(x)=,若a=,则函数f(x)的值域为R;若函数f(x)是R上的减函数,求实数a的取值范围为[,].【解答】解:若a=,当x<1时,函数f(x)=x2﹣3x=﹣∈[﹣2,+∞);当x≥1时,f(x)=≤0,故函数f(x)的值域为[﹣2,+∞)∪(﹣∞,0]=R.若函数f(x)=在R上单调递减,则,最新最全的数学资料尽在千人QQ群323031380微信公众号福建数学第10页(共17页)求得≤a≤,故答案为:R;[,].12.(6分)在平行四边形ABCD中,E,F分别是CD和BC的中点,若=x+y(x,y∈R),则2x+y=2;若=λ+μ(λ,μ∈R),则3λ+3μ=4.【解答】解:如图所示,①=+=+,与=x+y(x,y∈R)比较可得:x=,y=1.则2x+y=2.②由②可得:=+,同理可得:=+,∴=λ+μ=λ(+)+μ(+)=+,又=,∴=1,=1.则3λ+3μ=4.故答案为:2,4.13.(4分)已知函数f(x)=loga(0<a<1)为奇函数,当x∈(﹣2,2a)时,函数f(x)的值域是(﹣∞,1),则实数a+b=+1.【解答】解:∵函数f(x)=loga(0<a<1)为奇函数,∴f(﹣x)