1/13函数的表示法通用3篇函数的表示法1教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.教学目的:(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;(3)会求一些简单函数的定义域和值域;(4)能够正确使用“区间”的符号表示某些函数的定义域;教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数;教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;教学过程:一、引入课题1.复习初中所学函数的概念,强调函数的模型化思想;2/132.阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:(1)炮弹的射高与时间的变化关系问题;(2)南极臭氧空洞面积与时间的变化关系问题;(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题备用实例:我国****年4月份非典疫情统计:日期222324252627282930新增确诊病例数10610589103113126981521013.引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;4.根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.二、新课教学(一)函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域3/13(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range).注意:○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.2.构成函数的三要素:定义域、对应关系和值域3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.4.一次函数、二次函数、反比例函数的定义域和值域讨论(由学生完成,师生共同分析讲评)(二)典型例题1.求函数定义域课本P20例1解:(略)说明:○1函数的定义域通常由问题的实际背景确定,如果课前三个实例;4/13○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;○3函数的定义域、值域要写成集合或区间的形式.巩固练习:课本P22第1题2.判断两个函数是否为同一函数课本P21例2解:(略)说明:○1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)○2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。巩固练习:○1课本P22第2题○2判断下列函数f(x)与g(x)是否表示同一个函数,说明理由?(1)f(x)=(x-1)0;g(x)=1(2)f(x)=x;g(x)=(3)f(x)=x2;f(x)=(x+1)2(4)f(x)=|x|;g(x)=(三)课堂练习5/13求下列函数的定义域(1)(2)(3)(4)(5)(6)三、归纳小结,强化思想从具体实例引入了函数的的概念,用集合与对应的语言描述了函数的定义及其相关概念,介绍了求函数定义域和判断同一函数的典型题目,引入了区间的概念来表示集合。四、作业布置课本P28习题1.2(A组)第1—7题(B组)第1题函数的表示法2教学目标:1、进一步理解函数的概念,能从简单的实际事例中,抽象出函数关系,列出函数解析式;2、使学生分清常量与变量,并能确定自变量的取值范围。3、会求函数值,并体会自变量与函数值间的对应关系。4、使学生掌握解析式为只含有一个自变量的简单的整式、分式、二次根式的函数的自变量的取值范围的求法。5、通过函数的教学使学生体会到事物是相互联系的。是6/13有规律地运动变化着的。教学重点:了解函数的意义,会求自变量的取值范围及求函数值。教学难点:函数概念的抽象性。教学过程:(一)引入新课:上一节课我们讲了函数的概念:一般地,设在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数。生活中有很多实例反映了函数关系,你能举出一个,并指出式中的自变量与函数吗?1、学校计划组织一次春游,学生每人交30元,求总金额y(元)与学生数n(个)的关系。2、为迎接新年,班委会计划购买100元的小礼物送给同学,求所能购买的总数n(个)与单价(a)元的关系。解:1、y=30ny是函数,n是自变量2、,n是函数,a是自变量。(二)讲授新课刚才所举例子中的函数,都是利用数学式子即解析式表示的。这种用数学式子表示函数时,要考虑自变量的取值必须使解析式有意义。如第一题中的学生数n必须是正整数。例1、求下列函数中自变量x的取值范围.7/13(1)(2)(3)(4)(5)(6)分析:在(1)、(2)中,x取任意实数,与都有意义。(3)小题的是一个分式,分式成立的条件是分母不为0.这道题的分母是,因此要求。同理(4)小题的也是分式,分式成立的条件是分母不为0.这道题的分母是,因此要求且。第(5)小题,是二次根式,二次根式成立的条件是被开方数大于、等于零。的被开方数是.同理,第(6)小题也是二次根式,是被开方数,。解:(1)全体实数(2)全体实数(3)(4)且(5)(6)小结:从上面的例题中可以看出函数的解析式是整数时,自变量可取全体实数;函数的解析式是分式时,自变量的取值应使分母不为零;函数的解析式是二次根式时,自变量的取值应使被开方数大于、等于零。注意:有些同学没有真正理解解析式是分式时,自变量的8/13取值应使分母不为零,片面地认为,凡是分母,只要即可。教师可将解题步骤设计得细致一些。先提问本题的分母是什么?然后再要求分式的分母不为零。求出使函数成立的自变量的取值范围。二次根式的问题也与次类似。但象第(4)小题,有些同学会犯这样的错误,将答案写成或。在解一元二次方程时,方程的两根用“或者”联接,在这里就直接拿过来用。限于初中学生的接受能力,教师可联系日常生活讲清“且”与“或”。说明这里与是并且的关系。即2与—1这两个值x都不能取。例2、自行车保管站在某个星期日保管的自行车共有3500辆次,其中变速车保管费是每辆一次元,一般车保管费是每次一辆元。(1)若设一般车停放的辆次数为x,总的保管费收入为y元,试写出y关于x的`函数关系式;(2)若估计前来停放的3500辆次自行车中,变速车的辆次不小于25%,但不大于40%,试求该保管站这个星期日收入保管费总数的范围。解:(1)(x是正整数,(2)若变速车的辆次不小于25%,但不大于40%,则收入在1225元至1330元之间总结:对于反映实际问题的函数关系,应使得实际问题有9/13意义。这样,就要求联系实际,具体问题具体分析。对于函数,当自变量时,相应的函数y的值是。60叫做这个函数当时的函数值。例3、求下列函数当时的函数值:(1)(2)(3)(4)解:1)当时,(2)当时,(3)当时,(4)当时,注:本例既锻炼了学生的计算能力,又创设了情境,让学生体会对于x的每一个值,y都有唯一确定的值与之对应。以此加深对函数的理解。(二)小结:这节课,我们进一步地研究了有关函数的概念。在研究函数关系时首先要考虑自变量的取值范围。因此,要求大家能掌握解析式含有一个自变量的简单的整式、分式、二次根式的函数的自变量取值范围的求法,并能求出其相应的函数值。另外,对于反映实际问题的函数关系,要具体问题具体分析。作业:习题组2、3、5函数的表示法3一、教材分析10/13本节课选自《普通高中课程标准数学教科书-必修1》(人教A版)《函数的概念》共3课时,本节课是第1课时。托马斯说:“函数概念是近代数学思想之花”。生活中的许多现象如物体运动,气温升降,投资理财等都可以用函数的模型来刻画,是我们更好地了解自己、认识世界和预测未来的重要工具。函数是数学的重要的基础概念之一,是高等数学重多学科的基础概念和重要的研究对象。同时函数也是物理学等其他学科的重要基础知识和研究工具,教学内容中蕴涵着极其丰富的辩证思想。函数的的重要性正如恩格斯所说:“数学中的转折点是笛卡尔的变数,有了变数,运动就进入了数学;有了变数,辩证法就进入了数学”。二、学生学习情况分析函数是中学数学的主体内容,学生在中学阶段对函数的认识分三个阶段:(一)初中从运动变化的角度来刻画函数,初步认识正比例、反比例、一次和二次函数;(二)高中用集合与对应的观点来刻画函数,研究函数的性质,学习典型的对、指、幂和三解函数;(三)高中用导数工具研究函数的单调性和最值。1.有利条件现代教育心理学的研究认为,有效的概念教学是建立在学生已有知识结构的基础上的,因此教师在设计教学的过程中必须注意在学生已有知识结构中寻找新概念的固着点,引导学生通过同化或顺应,掌握新概念,进而完善知识结构。11/13初中用运动变化的观点对函数进行定义的,它反映了历史上人们对它的一种认识,而且这个定义较为直观,易于接受,因此按照由浅入深、力求符合学生认知规律的内容编排原则,函数概念在初中介绍到这个程度是合适的。也为我们用集合与对应的观点研究函数打下了一定的基础。2.不利条件用集合与对应的观点来定义函数,形式和内容上都是比较抽象的,这对学生的理解能力是一个挑战,是本节课教学的一个不利条件。三、教学目标分析课标要求:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域.1.知识与能力目标:⑴能从集合与对应的角度理解函数的概念,更要理解函数的本质属性;⑵理解函数的三要素的含义及其相互关系;⑶会求简单函数的定义域和值域2.过程与方法目标:⑴通过丰富实例,使学生建立起函数概念的背景,体会函数是描述变量之间依赖关系的数学模型;⑵在函数实例中,通过对关键词的强调和引导使学发现它12/13们的共同特征,在此基础上再用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用.3.情感、态度与价值观目标:感受生活中的数学,感悟事物之间联系与变化的辩证唯物主义观点。四、教学重点、难点分析1.教学重点:对函数概念的理解,用集合与对应的语言来刻画函数;重点依据:初中是从变量的角度来定义函数,高中是用集合与对应的语言来刻画函数。二者反映的本质是一致的,即“函数是一种对应关系”。但是,初中定义并未完全揭示出函数概念的本质,对y?1这样的函数用运动变化的观点也很难解释。在以函数为重要内容的高中阶段,课本应将函数定义为两个数集之间的一种对应关系,按照这种观点,使我们对函数概念有了更深一层的认识,也很容易说明y?1这函数表达式。因此,分析两种函数概念的关系,让学生融会贯通地理解函数的概念应为本节课的重点。突出重点:重点的突出依赖于对函数概念本质属性的把握,使学生通过表面的语言描述抓住概念的精髓。2.教学难点:第一:从实际问题中提炼出抽象的概念;第二:符号“y=f(x)”的含义的理解.难点依据:数学语言的抽象概括难度较大,对符号y=f(x)的理解会受到以前知识的负迁移。13/13突破难点:难点的突破要依托丰富的实例,从集合与对应的角度恰当地引导,而对抽象符号的理解则要结合函数的三要素和小例子进行说明。五、教法与学法分析1.教法分析本节课我主要采用教师导学法、知识迁移法和知识对比法,从学生熟悉的丰富实例出发,关注学生的原有的知识基础,注重概念的形成过程,从初中的函数概念自然过度到函数的近代定我。2.学法分析