卧式沉降螺旋卸料离心机在污泥脱水工艺的选用阮智伟钱青熊诚(上海市离心机械研究所有限公司,上海,200231)摘要:本文通过对卧式沉降螺旋卸料离心机关键技术的介绍,对适用于污泥脱水工艺中,对于不同的污泥特性所选用合适离心机分离技术参数进行了详细的讲解。并以活性污泥为例,针对有机物含量不断提高,脱水难度增大,通过离心机的设计微调,来满足不断提高的分离要求。关键词:活性污泥;有机物;一料一机;长径;液压差速;设计微调1前言随着我国国民经济的发展,工业废水、生活污水的排放量日益增加,为了保护生态环境,保护人民的身体健康,提高水环境质量,污水必须经过净化处理达标后才能排放。目前我国的污水处理量和处理规模在近10多年内迅速增长,截至2008年10月,全国城市、县及部分重点建制镇共建成污水处理厂1459座,日处理能力8553万吨(36个大城市共建成288座,日处理能力为3497万吨),全国城市污水处理率已由2005年的52%增加到2007年的63%;在建城镇污水处理项目1033个,设计日处理能力约3595万吨。在“十一五”中对我国污水处理的目标是:重点省会城市处理率要达到80%,一般城市要达到60%到70%,县城则要达到60%。按此污水处理要求可以预计推算,到“十一五”末期,我国污水厂总量将达到3000座以上,处理能力将近为500亿吨/年左右,其中包括新厂建设、老厂扩建和改造。在国家政策的鼓励和支持下,我国的环保污水处理迅速发展。在一个标准的污水处理厂或企业的污水处理系统中,工艺所需的机械设备有很多,主要包括格栅、刮泥机、搅拌机、输送机、鼓风机、各种输送泵、脱水机等等。其中,目前国内污水处理系统中所选用的污泥脱水设备,以板框压滤机、带式压滤机和离心机为主。本文通过对离心机各种机型,以及主要机型的结构介绍,并结合污泥的性质,来讲述在污水处理系统中如何结合实际工艺,更好的选择适用的离心机。2卧式沉降螺旋卸料离心机的分类按应用领域分主要为两大类:一类是:水处理领域中的应用。市政上水、下水,各类工业生产废水,垃圾处理场渗滤液,土木、隧道的泥水,造纸排放水,化学工厂排放水等等。在这类领域中,应用最为广泛的是卧式沉降螺旋卸料离心机的基本通用型。其结构的通用优势,使得该类机型应用在基本的固液分离工艺中非常得广泛。另一类是:制造工序中的应用。由于不同制造工艺、不同的物料特性、不同的离心要求,对离心机本身的要求就有各种特殊要求了。其中再细分一下,可分为三类:中国城镇水网①矿钢业:矿渣、黏土、高岭土、铜粉、铁粉、煤粉等。该类机型需要对离心机的耐磨性有非常高的要求。针对螺旋叶片、螺旋出料口、转鼓出料口等关键部位进行耐磨的优化设计。采用安装特制的陶瓷和硬质合金。②食品、药品工业:淀粉(玉米淀粉、马铃薯、甘薯)、酵母、果汁、饮料、各类药品等。该类机型对转鼓和螺旋的加工要求比较高,有些需要有特殊的镜面处理工艺,以及转鼓内留停机残液的自动排放,并在罩壳内装备了完整的洗净机构来满足医药行业规范。③化学工业:合成树脂、棕榈油、废油、聚合物、电子、半导体生产排放水工程等。化工领域工艺的复杂性和生产工艺的特殊性,机型结构分类很多,包括其中分离油、水、固体在同一分离过程中实现的三相分离机;以及分离因素达到8000G以上的超高转速的卧式沉降螺旋卸料离心机来实现高黏度液、微小粒子的分离。卧式沉降螺旋卸料离心机根据分离的对象不同,其在结构上也非常多样,用行业内的一句话定论是:“一料一机”。换句话说就是针对不同的物料,需要选用不同结构的离心机。在此,我们围绕在水处理环保领域中,主要以生活污水、工业污水为例,结合污水的特点,通过对离心机结构的分析,进行论述离心机的选用。3污泥处理的现状及背景在污水处理过程中,产生的大量污泥,其数量约占处理水量的0.3%~0.5%左右(以含水率为97%计)。污泥的处理在污水处理厂中占的建设费用和运行费用比重都很高,所以污泥的处理是污水处理系统非常重要的组成部分。关于污泥处理的工艺已经比较成熟,通过对生污泥(生污泥包括:初次沉淀污泥、剩余活性污泥和腐殖污泥)采用浓缩、消化、机械脱水、自然干化、堆肥、干燥焚烧等工艺方案的不同组合,来实现对污泥的最终处置。主要有三类方案:第一类,以消化处理为主,通过消化过程中产生的生物能即沼气,来作为能源利用,可以用做燃料或发电。该种消化方案在国外应用很多,而在国内,我们往往在对污泥进行浓缩完以后,直接进行机械脱水处理,很少有污水处理厂进行消化处理,即便采用了消化工艺,其实际运营又受消化过程中的工艺数据(如温度控制、营养控制、混合等因素)影响,使得实际效果也相差很远,而且所产生的沼气,国内污水处理厂也很少有进行能源再利用的。因此该类方案,在我国没有充分发挥好其能源再利用的优势。第二类,以堆肥、农用为主,这受污泥条件限制,发展规模也是相当有限。第三类,以干燥焚烧为主,该方案现在在国内属于大家追捧的宠儿。国内目前在建的项目,很多均以此方案为主,但是污泥并不是简单能通过焚烧解决了事。此类方案不光要考虑污泥的可燃值,中国城镇水网更要考虑燃烧后的环保处理,并且能够实现将焚烧产生的热能再利用。但更重要的是,工艺过程中的关键技术和设备我们还是主要依赖于进口,在投资和运行成本上需要值得斟酌。所以污泥处理的方案还是应该以综合处理为主。尤其污泥的最终处置要考虑污泥性质,当地的环境特点和投资运行管理情况等综合因素,需要以填埋、堆肥、干化、焚烧相结合。据有关资料介绍,包括美、英、法、德、日、澳和北欧国家在内,目前污泥处置手段的综合比例约为:填埋处置占39%;堆肥处置占12%;干化处置占21%;焚烧处置占23%;其他方法占5%。无论污泥如何处理,污泥的脱水问题一直是污水处理系统中重要的一个环节。因为污泥脱水的好坏将影响到后续污泥的处理,其污泥的含水率的高低,对污泥处理的成本影响是非常之大。尤其对需要进行后续干化或焚烧的污泥,其含水率将直接影响热能平衡所需要投入的运行成本。即便是进行填埋等其他处置方法,污泥的含水率也将影响污泥的体积和重量,对处置的成本也是影响很大。目前在国内污水处理厂中,絮凝剂投加的运行成本也是脱水系统中所占比重最大的。再者,在“节能减排”的大环境下,能耗的使用也成为污水处理系统中的一个热门问题。影响这些因素最直接的就是卧式沉降螺旋卸料离心机的合理选用和正确应用。4离心机结构及工作原理卧式沉降螺旋卸料离心机是依靠固液两相的密度差,在离心力场的作用下,加快固相颗粒的沉降速度来实现固液分离。见图1图1离心机的结构示意图转鼓前方设计有一个锥段,根据物料性质的不同,按照设定的速度高速旋转。物料在转鼓内壁以设定的转速旋转,沿着转鼓壳体形成同心液层,称为液环层,物料内所含的固体在离心力的作用下沉积到转鼓壁上,再通过螺旋的运转将固体干料推出转鼓。转鼓的运转速度直接决定分离因素,中国城镇水网一般讲转速高,分离因素大,固体中的含水率低,而螺旋的速差则直接影响到转送到转鼓外的固体含水率,它对处理量、停留时间和固体排出都有直接影响。这种结构也是我们所说的基本通用型离心机。然而污泥处理往往围绕着这几个主要问题展开:一、脱水后的污泥含水率要低;二、上清液的回收率要高;三、单位绝干泥所需要添加的絮凝剂量要少;四、离心机的能耗要降低。这几个主要问题的解决,最直接最有效的就是通过离心机的合理选型、结构的合理设计和选择合适的配置等多种因素进行改善。而且这些问题都是相互关联,互相影响。5应用于污泥脱水中,离心机的关键技术5.1选用合适的分离因素。通常为实现更好的分离效果,大多采用提高离心机的分离因素,即提高离心机转子的转速来达到目的。但是,并不是说分离因素越高,分离的效果越好。这是有一个很关键的问题在于我们所分离的对象是污泥絮体。在20世纪70年代,开发出的低速离心机(也就是目前广泛应用的通用型卧式沉降螺旋卸料离心机)专门用于污泥脱水,该离心机与应用于其他行业和领域中的离心机最大区别在于分离因素。其分界点是分离因素3000,也就是离心力为3000G(G为重力加速度)。应用于对絮凝的污泥进行脱水的离心机的分离因素必须≤3000,因污泥絮体较轻并且疏松,如采用高速离心机很容易被甩碎。而低速离心机由于转速低,其动力消耗、机械磨损、噪声等都比较低,所以在污泥脱水领域中广泛推广起来,逐步在取代带式压滤机和板框压滤机。其一关键是,污泥絮体在受到离心力的作用下,不会因为过大的摩擦力(污泥絮体由离心力所产生的与转鼓内壁的摩擦力)而受到螺旋叶片推进时,将絮凝好的大污泥絮体搅碎,使效果适得其反。其二关键是,低转速使得泥饼在向前推进时,在不断被离心压密而不会因受到螺旋的旋转推进所引起进泥的搅动(泥饼的搅动主要受离心机的差速影响,下文有进一步详细介绍)而影响分离效果。此外转鼓内的水深容积比较大,有利于提高水力负荷和固体负荷,更能适量节省絮凝剂的用量。目前的污泥种类主要分初次沉淀污泥、活性污泥、腐殖污泥、消化污泥均由亲水性带负电荷的胶体颗粒组成,挥发性固体含量高、比阻值大(比阻值越大,脱水越困难)。特别是活性污泥的有机分散包括平均颗粒在1.0~100μ之间的超胶体颗粒及由胶体颗粒聚集的大颗粒所组成,所以其比阻值最大,脱水最为困难。所以絮凝剂的作用就是有效降低了比阻值,改善了脱水性能。以我们在市政污水处理的经验总结,不同的污泥,只有进行合适的分离因素选择,合适的加药量的投加才能达到最佳的效果。过高的分离因素带来的实际效果与分离因素的增加比例不明显,而且会更容易破坏污泥絮体。所以在参数选择时可以根据下表数据进行调整。表一离心机分离因素与污泥特性对照表中国城镇水网污泥种类污泥比阻值单位:m/kg絮凝剂投加量(一吨绝干泥所需要的加药量)单位:kg/t.ds分离因素初次沉淀污泥(46.1~60.8)×10122~31000~2000活性污泥(164.8~282.5)×10124~81800~3000腐殖污泥(59.8~81.4)×10122~41000~2000消化污泥(123.6~139.3)×10123~61800~30005.2增加离心机的长径比。长径比:离心机转子的有效工作长度与转鼓工作内径的比值。通常来说,长径比对于污泥脱水应用中,其数值越大其带来的分离效果越好。但是,长径比越大的离心机,其转速的提升就非常困难。目前在国内市场应用于污泥脱水中的离心机,最主流的长径比在3.7~4.4左右。随着离心机应用技术的提高,装备制造加工设备的提升和材料科学的迅速发展,使得分离因素达到3000,长径比为5.0的卧式沉降螺旋卸料离心机成为可能,国际许多离心机生产厂商和国内少数离心机生产厂商将此技术开始应用于污泥脱水中。长径比的最大优点是:增加了泥饼在转鼓内的脱水段的停留时间和清液在转鼓内的沉降段的停留时间。停留时间的长短将直接影响泥饼脱水后的含水率和上清液的回收率。以同样的分离因素、同样的转鼓锥角设计、同样的转鼓水深容积设计,在达到相同的分离效果前提下,长径比每增加0.1,其絮凝剂的投加量将减少5~8%。其对实际运行的成本影响是非常可观的。5.3转鼓的锥角和清液的溢流口的设计。离心机的转鼓锥角大小的设计和清液的溢流口高低设计,将很明显的影响污泥脱水的效果。我们通过两组图的进行比较。图2是在同样的液池深h的前提下,对不同锥角设计的离心机进行比较。可以图上看出,12°锥角的脱水段1小于8°锥角的脱水段2,而12°锥角的沉降段1大于8°锥角的沉降段2。我们可以从两组不同锥角的比较可以得出12°锥角的离心机由于沉降段较长更有利于上清液回收率的提高,8°锥角的离心机由于脱水段较长其更有利于获得较低的泥饼含水率。中国城镇水网是以同样的锥角为标准,通过调节转鼓上的溢流口高低,从而来改变液池深度的大小,达到调整脱水段和沉降段的大小,通过此技术的调整,可以满足不同要求的分离效果。