2019/8/51一、机械密封原理(一)定义与组成(图1-1)组成:1.密封端面:动环、静环─摩擦副2.缓冲补偿机构:由弹性元件(圆柱弹簧、圆锥弹簧、波片弹簧、波纹管等)构成。—使贴合;3.辅助密封圈:包括动环密封圈、静环密封圈等,有各种形式:如O型圈、V型圈、楔形圈等2019/8/52机械密封是一种用于旋转流体机械的轴封装置。(用于离心泵、离心机、反应釜、压缩机等设备,轴和设备腔体间存在一个圆周间隙,设备介质从中泄漏,因此必须设一道阻漏装置。因机械密封具有泄漏少、寿命长等优点,成为了主要的轴密封方式,又叫端面密封。)在国家有关标准中的定义:由至少一对垂直于旋转轴线的端面组成,在流体压力及补偿机构弹力(或磁力)共同作用下,以及辅助密封圈的配合下,该对端面保持贴合并相对滑动,而构成的防止流体泄漏的装置。2019/8/533、原理通过一系列零件将径向密封转化为轴向密封,在弹簧和介质压力共同作用下,对由于设备运行所造成的轴向磨损可以及时补偿,使轴向密封面始终保持贴合。由于机械密封(轴向密封)在运行中可以对轴向磨损进行补偿,而填料密封(径向密封)不能对径向磨损进行补偿,故机械密封比填料密封寿命长。2、传动关系轴或轴套───紧固螺钉5──弹簧座4──弹簧3─补偿环1压盖──防转销8─非补偿环6(三)密封机理1、4个密封点(亦称4个泄漏点,如图1-1)泄漏点1—摩擦端面泄漏点,依靠弹力和介质压力保持贴和(动密封点,两个摩擦副之间有相对转动)泄漏点2—补偿环密封圈,静密封点,密封圈与轴或轴套之间有微动;泄漏点3—非补偿环密封圈,静密封点,密封圈与相配合件之间相对静止;泄漏点4—压盖与腔体间的密封圈,静密封点,密封圈与相配合件之间相对静止.2019/8/54通过冲洗、冷却、过滤、分离等方式进行冷却和润滑,从而改善密封的工作环境,减少密封的泄漏量,延长使用寿命。应当把它看作机械密封的组成部分。(四)辅助设施2019/8/551、按使用条件分类(1)高速密封(ZBJ22-001-88:线速度25~100m/s)和普通密封(2)高压和低压密封(3)高温、常温和低温密封(4)泵用、釜用和压缩机用密封(5)耐腐蚀、抗颗粒机械密封2、通常按结构分类多弹簧、单弹簧密封旋转式、静止式密封外装式、内装式密封外流式、内流式密封(五)机械密封的种类2019/8/56(六)旋转式和静止式机械密封(图1-2)(1)旋转式:补偿机构(弹性元件)随轴旋转。)(由于安装方便,普通密封大多采用,但易产生不平衡,不能用于高速,且消耗搅拌功率(2)静止式:补偿机构(弹性元件)不随轴旋转。(用于高速)2019/8/57(七)内装式和外装式机械密封(图1-3)(1)内装式:静环装在压盖内侧,静环端面面向工作腔。(用于温度、压力较高,腐蚀性不强的场合)(2)外装式:静环装在压盖外侧,静环端面背向工作腔。(用于低压、腐蚀性强的场合)2019/8/58(一般和内装式、外装式一致)(1)内流式:泄漏方向朝向轴心。(一般密封都采用这种结构)(2)外流式:泄漏方向朝向离心力方向。(泄漏量大,只有在压力、温度都不高的腐蚀性介质中用)(八)内流式和外流式机械密封(九)多弹簧和单弹簧机械密封(1)多弹簧:(又叫小弹簧,轴向尺寸小,轴向弹力均匀)宜用于高速,不宜用于腐蚀性介质。(2)单弹簧:(又叫大弹簧,轴向尺寸大,轴向弹力不均匀)不宜用于高转速的场合。2019/8/59(1)平衡型:载荷系数K<1.0(用于高压场合)(2)非平衡型:载荷系数K≥1.0(用于普通压力场合)(十)平衡型和非平衡型机械密封(十一)补偿机构形式(1)磁力:系统压力较低时用(2)波片弹簧、锥形弹簧、螺旋圆柱大弹簧、小弹簧(3)橡胶波纹管、聚四氟乙烯波纹管、金属波纹管2019/8/510两套密封面对面或背对背安装在一起。用于工作介质有毒、易燃、易爆、易挥发、易结晶、高温、低温,或气体、高真空度等场合。两套密封之间形成一个密封腔,在密封腔中引入封液:堵封、润滑、冷却,选洁净、润滑性好的封液介质。(十二)双端面机械密封(图1-4)2019/8/511两套密封沿同一方向布置,密封腔压力逐级降低,用于高压场合。(十三)串联式机械密封(图1-5)2019/8/512去掉了补偿环密封圈及其摩擦阻力,补偿环密封圈改至弹簧座处,补偿环追随性提高.避免了补偿环密封圈因轴串、振动所产生的磨损。金属波纹管用于高温介质聚四氟乙烯波纹管用于腐蚀性介质。(十四)波纹管机械密封2019/8/513将机械密封、轴套、压盖组合成一个整体。安装时只需固定压盖、轴套,取下定位挡块即可。安装方便,排除了安装不良的影响。(十五)集装式机械密封(图1-6)2019/8/514二、机械密封的基本零件(一)对摩擦副密封环的要求摩擦副密封环是机械密封的主要元件,它在很大程度上决定了机械密封的性能和寿命。因此,对它有一些基本要求。(1)足够的强度和刚度保证在工作条件(如压力,温度,滑动速度等)下不损坏,变形小,工作条件波动时影响小。(2)端面有足够的硬度、耐腐蚀性能确保使用寿命。(3)耐热冲击力高的导热系数,低的线膨胀系数。(4)较小的摩擦系数,良好的自润滑性,材料与介质有很好的浸润性短时间干摩擦,不损伤端面。(5)易加工,材料成本低2019/8/515(1)一般选择一软一硬的材料配对,软环作窄环,如YG6/M106K,只有介质含固体颗粒、易结晶、粘度高时才选用硬对硬。(2)尽量采用内装、内流式结构,防止机械杂质进入密封端面,减少泄漏量。(3)选导热性良好材料作动环。以利散热,降低端面温度。(4)环的壁厚不可太薄,以保证整体强度、刚度,也利散热(导热欠佳的材料,可薄一些)。(5)动环和轴(轴套)间隙A11(0·4~0·6)以利补偿静环和轴(轴套)间隙1~3mm以免摩擦(二)摩擦副匹配要考虑的因素2019/8/516(1)主要决定窄环(软环)宽度,宽环外径—窄环外径≥0.5,宽环内径≤窄环内径-0.5;(2)泄漏量与摩擦副端面宽度关系不大(3)窄的端面摩擦热少,温度梯度小,热变形小,磨损均匀;(4)从受力角度出发,窄的端面整体强度和刚度差,易损坏或变形。因此应综合考虑。对于普通密封,端面宽度推荐值如下:(三)密封端面宽度2019/8/517宽系列用于组对性能好(如YG6/M106K、SiC/M106K)、工况条件好的场合窄系列用于组对性能欠佳(如YG6/YG6、YG6/青铜)、饱和蒸气压高、易挥发、颗粒介质,高速机械密封,(对于轻烃介质,在强度够的情况下,取窄系列)。轴径≤16≤35≤55≤70≤100≤120宽系列2.53.04.05.06.07.0中系列2.02.53.04.05.05.0窄系列1.52.02.02.53.03.02019/8/518(1)平面度0.0009,硬质Ra≤0.2,软质Ra≤0.4,表面不应有裂纹、划伤、气孔、疏松等缺陷。(2)密封环端面与安装辅助密封圈处的平行度、垂直度按GB1184-80的7级精度要求。(3)安装辅助密封圈处粗糙度:Ra≤3.2,径向尺寸公差H8或h8。上述要求是对普通机械密封而言,对转速较低的釜用机械密封可适当放宽标准,对高速机封要求更高。(四)密封环的主要技术要求2019/8/519三、机械密封的计算(一)补偿环的受力状况要进行端面比压计算,首先要分析补偿环的受力情况。如图,补偿环受到的力有:2019/8/520(二)密封端面中液膜反力的分布情况在d2处,端面间液膜压力等于P介。在d1处,端面间液膜压力近似为零。对于中间分布情况,各点的压力分布与介质性质有关,还与端面中的相态和摩擦状态有关。对于丁烷等(粘度小、易汽化介质),压力分布成凸抛物线状1。对于水等(中等粘度介质),压力分布成直线性2。对于润滑油等(高粘度介质),压力分布成凹抛物线状3。2019/8/521在d2处,端面间液膜压力等于P介。在d1处,端面间液膜压力近似为零。对于中间分布情况,人们通过大量试验发现,各点的压力分布与介质性质有关,还与端面中的相态和摩擦状态有关。对于丁烷等(粘度小、易汽化介质),压力分布成凸抛物线状1。对于水等(中等粘度介质),压力分布成直线性2。对于润滑油等(高粘度介质),压力分布成凹抛物线状3。2019/8/522Fm=λP介S(液膜比压Pm=λP介)λ:膜压系数≈0.5(中粘度),=0.65~0.75(低粘度),=0.3~0.4(高粘度)。它是一个平均值,表示液膜压力占介质压力的比例,并不表示压力的分布情况。该公式为端面比压的计算提供了方便。S:端面面积S=π(d22-d12)/4(三)液膜反力的计算2019/8/523易汽化介质(如液态烃等)的机械密封一直是石化行业中较难解决的问题,其原因是膜压系数不稳定,因其在端面中的相态和摩擦状态不稳定。因此弄清端面间的压力分布,对于正确计算液膜反力很有必要。(四)易汽化介质中密封端面间的液膜压力分布2019/8/524大家都知道,对于轻烃类介质,端面缝隙中存在气液两相。rb为汽化半径,此处液膜压力=P饱和(tp),tp处温度最高。r2~rb区域,液膜压力成线性分布,液相rb~r1区域,液膜压力成抛物线分布,气相对于易汽化介质膜压系数λ,中国石油大学顾永泉教授提出一个计算公式:λ=2/3×/P1+(1/2-1/6×Pf/P1)(r2~rb)/(r2-r1)式中:Pf:rb处气化压力P1:介质压力rb:气化半径r2/r1:端面外半径/内半径计算值一般在0.70~0.85之间。2019/8/525(1)端面几何尺寸,由上面公式可以看出。(2)密封结构:前面讲的都是对内流式而言的,对外流式,λ还要增大0.2左右,对于中等粘度介质λ=0.7(3)摩擦状态:边界摩擦(端面多个高点直接接触承压。液膜厚度只有几个分子厚,且不连续,几乎不承压,只起润滑作用,λ=0)、液体摩擦(全液膜,泄漏量大,机械密封一般不采用)、混和摩擦(介于以上两种之间,这是机械密封端面摩擦的主要形式)(4)端面缝隙情况:渐开形,λ减小;渐收形,λ增大(5)其他因素:转速高,对于内流式λ减小,对于外流式λ增大。此外端面比压、密封面温度、粗糙度等都有一定影响。(五)膜压系数的影响因素2019/8/526Pt=F弹/SF弹可计算得出,但一般有误差±10%,这是由于制造厂、制造工艺、原材料的化学成分、热处理工艺等存在差异的缘故。一般Pt=0.15~0.2Mpa(内装),0.3~0.6Mpa(外装),反应釜中,转速低,轴摆动大,取大值。(六)弹簧比压的计算2019/8/527介质压力对补偿环的有效作用A面积与端面面积S之比:K=A/S(七)载荷系数KK=(d22-d02)/(d22-d12)d0为介质分界圆直径当K≥1时,机械密封为非平衡型;当K<1时,机械密封为平衡型;平衡系数β=100(1-K)%载荷比压:P载=KP介2019/8/528P=Pt+P载-P液膜=Pt+(K-λ)P介(内装式)对于双端面机械密封介质侧:P液膜=P外+λ(P内-P外)P载=KP内+(1-K)P外所以:P=Pt+KP内+(1-K)P外-[P外+λ(P内-P外)]=Pt+(K-λ)(P内-P外)=Pt+(K-λ)ΔP(八)端面比压2019/8/529端面比压的选取原则:(1)必须高于弹簧比压;(2)必须大于介质在端面温度升高时的饱和蒸汽压;在保证以上条件下,尽量取小值,以防端面发热,破坏液膜,加剧磨损,功率消耗增大,密封使用寿命减短。同时考虑以下原则:(1)对自润滑性好的组对(M106K/SiC、YG6/SiC、M106K/YG6)可以取稍大值(因液膜不易被破坏,摩擦系数不易增加。)。(2)对于外装式机械密封,可以取稍小值(因介质比压很小,而Pt不可能很大。)。(3)对于高粘度介质,取稍大值(以保持端面贴合)。(4)易挥发介质(饱和蒸汽压高)稍小值(以减少温升)。2019/8/530推荐的端面比压值因素程度内装式机械密封外装式机械密封饱和蒸汽压接近水比水低0.5~1.00.3~0.5比水高0.3~0.5———粘度比水高0.5~1.0