02体温监测仪器—麻醉设备学

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第二章体温监测仪器麻醉设备学安医大二附院李加荣2第一节医用电子监测仪器概述医用诊断设备医用治疗设备心电图机、脑电图机、监护仪、睡眠监测仪等医用电子监测仪器呼吸机、麻醉机、输液泵、人工心肺机、高频电刀、γ刀等在医疗设备分类中,医用电子监测仪器所在的位置:3第一节医用电子监测仪器概述医用电子监测仪器的基本构成信号采集信号预处理信号处理记录/显示数据存储数据传输信号校准刺激/激励反馈/控制4第一节医用电子监测仪器概述典型生理参数及其传感器和电极生理参数举例传感器或电极举例医用电子仪器举例体温热敏电阻温度传感器多参数监护仪心电表面电极心电图仪血压压电传感器血压监护仪血氧饱和度光电传感器血氧饱和度监护仪脑电帽状、表面或针状状电极脑电图仪肌电表面或针状电极肌电图仪血流量超声换能器、光电传感器、电磁感应器、热敏电阻血流量检测仪动脉氧分压Ag-AgCl电极血气分析仪组织密度超声换能器超声诊断仪麻醉药物浓度红外光电传感器麻醉监护仪5第一节医用电子监测仪器概述信号预处理由于生理信息换能器的输出通常具有电量幅度小、频率低的特点,极易受外界和人体自身因素干扰。因此在转换、分析之前,必须进行预处理。常用信号预处理的方法:•采用差分放大电路,抑制输入干扰信号和电路噪声•采用滤波电路,滤除生理信号频谱范围之外的信息•采用非平衡电桥,提取和放大有用信号6第二节温度检测的基本原理和方法热量的概念:热量是能量的一种形式。热力学第一定律:封闭系统中总能量恒定。能量即不会增加,也不会消失。热力学第二定律:封闭系统中,热量总是从温度较高的区域流向或传递到温度较低的区域,除非通过做功使其向反方向移动。7第二节温度检测的基本原理和方法热量的传递方式:两个物体有温度差时或一个物体的温度改变,热量将会从温度较高的区域转移到温度较低的区域,直到达到热平衡状态。传导主要在固体中进行主要在固体中进行,有时也在流体中进行,较热的分子将能量直接传递给较冷的分子。对流在流体中进行在流体中进行。辐射通过电磁波在物体间传递能量,不需要传递介质的存在,真空中同样会有辐射。8第二节温度检测的基本原理和方法温度的定义:温度是表征物体冷热程度的物理量。是一个物体相对于某个参照物的冷热程度的量度。温度是大量分子热运动的集体表现,是物体分子平均动能的标志,含有统计意义。对于个别分子来说,温度是没有意义的。两个物体温度相同,但所含热量可能不同。加热一杯水和加热一桶水所需的热量一样吗?烧开一锅水和烧开一锅油所需的能量一样吗?9第二节温度检测的基本原理和方法温度只能通过物体随温度变化的某些特性来间接测量。用来量度物体温度数值的标尺叫温标,如华氏温标、摄氏温标、热力学温标。-273.16℃绝对零度。是热力学温标的开始,是温度的极限。假设达到这一温度,所有原子和分子的热量运动都将停止。这是一个只能逼近而不能达到的最低温度。人类在1926年得到了0.71K的低温,目前,已得到了距绝对零度只差三千万分之一度的低温,但仍不可能得到绝对零度。其实,绝对零度无法测量,是依靠计算得出来的。温度降低时,分子的活动就会变慢。那么依靠计算得出,当降到绝对零度时,分子是静止的。所以就得出了绝对零度的概念。10第二节温度检测的基本原理和方法温度的测量方法分类按测量原理分•热膨胀式测温法•蒸汽压力式测温法•热敏电阻测温法•热电耦测温法•辐射测温法•化学测温法•声学测温法•压力测温法按与被测物体的接触方式分非接触式优点:测温范围广,不受上限限制,不破坏被测物体的温度场,反应快。缺点:受物体发射率、测量距离、烟尘水汽等外界因素影响,误差较大。接触式优点:简单、可靠、精度较高。缺点:测温延迟,破坏被测物体的温度场。11第二节温度检测的基本原理和方法测温方式-接触式测温法:按照测量体是否与被测介质接触,可分为接触式测温法和非接触式测温法两大类。接触式测温法:测温元件直接与被测对象接触。两者之间进行充分的热交换,达到热平衡状态。优点:直观可靠直观可靠缺点:1)感温元件影响被测温度场的分布;2)接触不良等会带来测量误差3)温度太高和腐蚀性介质对感温元件的性能和寿命不利12第二节温度检测的基本原理和方法测温方式–非接触式测温法:感温元件不与被测对象相接触,而是通过辐射进行热交换射进行热交换。优点:1)避免接触被测目标;2)具有较高的测温上限;3)反应速度快,便于测量运动物体的温度和快速变化的温度。缺点:由于受物体的发射率、被测对象到仪表之间的离以及烟尘、水汽等其他介质的影响,测温误差相对较大。13第二节温度检测的基本原理和方法温度的测量方法热膨胀测温法热敏电阻测温法辐射测温法化学测温法14第二节温度检测的基本原理和方法15第二节温度检测的基本原理和方法一、玻璃温度计测温法利用液体热胀冷缩的原理制成。封闭在玻璃管中的液体受热时体积膨胀,液柱升高;温度降低,液柱下降。贝克曼温度计是精确测量温差的温度计,它的主要特点是:(1)它的最小刻度为0.01℃,用放大镜可以读准到0.002℃,测量精度较高;还有一种最小刻度为0.002℃,可以估计读准到0.0004℃。(2)一般只有5℃量程,0.002℃刻度的贝克曼温度计量程只有1℃。(3)其结构与普通温度计不同,在毛细管上端,加装了一个水银贮管,用来调节水银球中的水银量。因此虽然量程只有5℃,却可以在不同范围内使用。一般可以在-6℃~120℃使用。16第二节温度检测的基本原理和方法二、热敏电阻测温法热敏电阻测温法是中低温区最常用的一种温度检测器,测量精度高、性能稳定。其中铂电阻是一种比较特殊的热敏电阻,由于它的温度范围宽,线性极佳,(在-40~125度范围内非线性仅为0.2%),因此在工业上成为了一种标准,可以和仪表直接连接。17第二节温度检测的基本原理和方法1.热敏电阻测温原理及材料任何物体的电阻都与温度有关,但是能满足要求的并不多。在实际应用中,不仅要求有较高的灵敏度,而且要求有较高的稳定性和重现性。按感温元件的材料来分有金属导体和半导体两大类。金属导体有铂、铜、镍、铁和铑铁合金。目前大量使用的材料为铂、铜。半导体有锗、碳和热敏电阻(氧化物)等。热敏电阻包括正温度系数(PTC)和负温度系数(NTC)热敏电阻,以及临界温度热敏电阻(CTR)。18第二节温度检测的基本原理和方法PTC(PositiveTemperatureCoeff1Cient)是指在某一温度下电阻急剧增加、具有正温度系数的热敏电阻现象或材料。该材料是以BaTiO3(钛酸钡)、SrTiO3(钛酸锶)、PbTiO3(钛酸铅)等为主要成分的烧结体,掺入微量的Nb、Ta、Bi、Sb、Y、La等氧化物进行原子价控制而使之半导体化,常将这种半导体化的BaTiO3等材料简称为半导(体)瓷;同时还添加增大其正电阻温度系数的Mn、Fe、Cu、Cr的氧化物和起其他作用的添加物,采用一般陶瓷工艺成形、高温烧结而使钛酸铂等及其固溶体半导化,从而得到正特性的热敏电阻材料.其温度系数随组分及烧结条件(尤其是冷却温度)不同而变化。19第二节温度检测的基本原理和方法NTC(NegativeTemperatureCoeff1Cient)是指随温度上升电阻呈指数关系减小、具有负温度系数的热敏电阻现象和材料。该材料是利用锰、铜、硅、钴、铁、镍、锌等两种或两种以上的金属氧化物进行充分混合、成型、烧结等工艺而成的半导体陶瓷,可制成具有负温度系数(NTC)的热敏电阻。其电阻率和材料常数随材料成分比例、烧结气氛、烧结温度和结构状态不同而变化。现在还出现了以碳化硅、硒化锡、氮化钽等为代表的非氧化物系NTC热敏电阻材料。20第二节温度检测的基本原理和方法临界温度热敏电阻CTR(CriticalTemperatureResistor)具有负电阻突变特性,在某一温度下,电阻值随温度的增加激剧减小,具有很大的负温度系数。构成材料是钒、钡、锶、磷等元素氧化物的混合烧结体,是半玻璃状的半导体,也称CTR为玻璃态热敏电阻。骤变温度随添加锗、钨、钼等的氧化物而变。这是由于不同杂质的掺入,使氧化钒的晶格间隔不同造成的。若在适当的还原气氛中五氧化二钒变成二氧化钒,则电阻急变温度变大;若进一步还原为三氧化二钒,则急变消失。产生电阻急变的温度对应于半玻璃半导体物性急变的位置,因此产生半导体-金属相移。CTR能够作为控温报警等应用。21第二节温度检测的基本原理和方法2.热敏电阻测温系统的测温原理热敏电阻测温的基本原理是将随温度变化的电阻转化为电压变量,一般由热敏电阻温度传感器、测温电路、连接导线和显示仪表等构成。+-+-+-22第二节温度检测的基本原理和方法随着集成电路制造技术的提高,大量的集成温度传感器应用于体温检测仪器中。例,MAX6611型集成温度传感器,及其应用电路、输出特性如图所示:23第二节温度检测的基本原理和方法三、红外线测温法1.红外辐射的发现1800年,英国天文学家WilliamHerschel用分光棱镜将太阳光分解成从红色到紫色的单色光,依次测量不同颜色光的热效应热效。他发现,当水银温度计移到红色光边界以外色光边界以外,人眼看不见任何光线的黑暗区的时候,温度反而比红光区更高。反复试验证明,在红光外侧在红光外侧,确实存在一种人眼看不见的“热线”,后称为“红外线”,也就是“红外辐射”。24第二节温度检测的基本原理和方法电磁波谱电磁波谱是为了便于研究而给一系列辐射现象赋予的名称。红外线自然界任何物体,只要温度高于绝对零度(-273.15C),就会就会以电磁辐射的形式在非常宽的波长范围内发射能量,产生电磁波(辐射能)。红外线波长范围:0.75μm~1000μm。25第二节温度检测的基本原理和方法2.红外测温法的原理任何有一定温度的物体,都会以电磁波的形式向外界辐射出能量,所辐射能量的大小直接与该物体的温度有关。只要测出所发射的能量,就可得出物体温度。利用这个原理制成的温度测量仪表叫红外辐射测温仪。这种测量不需要与被测对象接触,因此属于非接触式测量。它有很宽的测量范围,从-50℃直至高于3000℃。26第二节温度检测的基本原理和方法3.红外热成像原理光学器件将物体发出的红外辐射聚集到探测器上,探测器把入射的辐射转换成电信号,进而被处理成可见图像,即热图。27第二节温度检测的基本原理和方法四、化学测温法化学测温法的原理不尽相同,但都是物体受热后发生一系列化学变化,导致检测物的分子结构改变,使得反射光的颜色发生变化。例,变色测温贴片28第三节体温监测仪器一、人的体温人体不同部位的温度是不同的。代表人体真实温度的是心脏和脑部的血液温度,称作中心温度。按测量的部位,体温测量分为:肺动脉中心测温:是最准确的方法,缺点是有创、操作复杂直肠测温:是临床体温测量的标准。但滞后于中心温度的变化前额测温:简便、廉价、无创。但影响因素较多,准确率低。腋下测温:(同前额测温)口腔测温:简便,应用较广泛,但也不够准确,需要患者配合才能完成,不适合幼儿、有插管和镇静状态的患者。耳鼓膜测温:无创、快捷、准确。鼓膜的位置接近下丘脑,可以较为准确地反映下丘脑的血液温度。已成为中心温度的较好代表。29第三节体温监测仪器二、基于热敏电阻的电子体温监测仪经口腔、直肠或皮肤表面的电子体温检测通常采用热敏电阻测温法。热敏电阻体温监测仪器一般由热敏电阻传感器、电阻矩阵、运算放大器、A/D转换电路以及报警和显示电路组成。数值及报警显示面板指令输入温度传感器运算放大器参比电阻矩阵低通滤波器CPU中央处理器A/D转换温度定标温度测量原理图30第三节体温监测仪器目前临床使用的绝大多数多参数监护仪,都有体温监测功能,需要配合(热敏电阻)传感器使用。可以连续监测病人体温,减少护士工作量。但精确度低于玻璃体温计。31第三节体温监测仪器三、红外辐射体温测量仪医用红外辐射体温测量仪有皮肤红外体温计、红外耳鼓膜测温计以及红外热成像仪三种类型。红外测温法的优点:不接触、不传染,快速缺点:准确度低,误差大,不稳定。造价高,操作复杂。1.测量皮肤表面温度的红外温度计通常是测量额头(因为方便)皮肤温度的测量受以下两个因素的很大影响:①皮下血流分布情况,以及皮肤附近

1 / 40
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功