一次函数的应用题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1.某移动公司对于移动话费推出两种收费方式:A方案:每月收取基本月租费25元,另收通话费为0.36元/min;B方案:零月租费,通话费为0.5元/min.(1)试写出A,B两种方案所付话费y(元)与通话时间t(min)之间的函数表达式;(2)分别画出这两个函数的图象;(3)若林先生每月通话300min,他选择哪种付费方式比较合算?解:(1)A方案:y=25+0.36t(t≥0),B方案:y=0.5t(t≥0).(2)这两个函数的图象如下:O51510●510yt30152535●y=25+0.36t(t≥0)O132123yt●y=0.5t(t≥0)●(3)当t=300时,A方案:y=25+0.36t=25+0.36×300=133(元);B方案:y=0.5t=0.5×300=150(元).所以此时采用A方案比较合算.动脑筋国际奥林匹克运动会早期,男子撑杆跳高的纪录近似值如下表所示:年份190019041908高度(m)3.333.533.73观察这个表中第二行的数据,可以为奥运会的撑杆跳高纪录与时间的关系建立函数模型吗?用t表示从1900年起增加的年份,则在奥运会早期,男子撑杆跳高的纪录y(m)与t的函数关系式可以设为y=kt+b.上表中每一届比上一届的纪录提高了0.2m,可以试着建立一次函数的模型.年份190019041908高度(m)3.333.533.73解得b=3.3,k=0.05.公式①就是奥运会早期男子撑杆跳高纪录y与时间t的函数关系式.于是y=0.05t+3.33.①当t=8时,y=3.73,这说明1908年的撑杆跳高纪录也符合公式①.由于t=0(即1900年)时,撑杆跳高的纪录为3.33m,t=4(即1904年)时,纪录为3.53m,因此b=3.3,4k+b=3.53.能够利用上面得出的公式①预测1912年奥运会的男子撑杆跳高纪录吗?实际上,1912年奥运会男子撑杆跳高纪录约为3.93m.这表明用所建立的函数模型,在已知数据邻近做预测,结果与实际情况比较吻合.y=0.05×12+3.33=3.93.y=0.05t+3.33.①能够利用公式①预测20世纪80年代,譬如1988年奥运会男子撑杆跳高纪录吗?然而,1988年奥运会的男子撑杆跳高纪录是5.90m,远低于7.73m.这表明用所建立的函数模型远离已知数据做预测是不可靠的.y=0.05×88+3.33=7.73.y=0.05t+3.33.①请每位同学伸出一只手掌,把大拇指与小拇指尽量张开,两指间的距离称为指距.已知指距与身高具有如下关系:例2指距x(cm)192021身高y(cm)151160169(1)求身高y与指距x之间的函数表达式;(2)当李华的指距为22cm时,你能预测他的身高吗?上表3组数据反映了身高y与指距x之间的对应关系,观察这两个变量之间的变化规律,当指距增加1cm,身高就增加9cm,可以尝试建立一次函数模型.解设身高y与指距x之间的函数表达式为y=kx+b.将x=19,y=151与x=20,y=160代入上式,得19k+b=151,20k+b=160.(1)求身高y与指距x之间的函数表达式;解得k=9,b=-20.于是y=9x-20.①将x=21,y=169代入①式也符合.公式①就是身高y与指距x之间的函数表达式.解当x=22时,y=9×22-20=178.因此,李华的身高大约是178cm.(2)当李华的指距为22cm时,你能预测他的身高吗?(1)根据表中数据确定该一次函数的表达式;练习(2)如果蟋蟀1min叫了63次,那么该地当时的气温大约为多少摄氏度?(3)能用所求出的函数模型来预测蟋蟀在0℃时所鸣叫的次数吗?在某地,人们发现某种蟋蟀1min所叫次数与当地气温之间近似为一次函数关系.下面是蟋蟀所叫次数与气温变化情况对照表:1.蟋蟀叫的次数…8498119…温度(℃)…151720…解设蟋蟀1min所叫次数与气温之间的函数表达式为y=kx+b.将x=15,y=84与x=20,y=119代入上式,得15k+b=84,20k+b=119.解得k=7,b=-21.于是y=7x-21.(1)根据表中数据确定该一次函数的表达式;有y=7x-21=63,解得x=12.当y=63时,解(2)如果蟋蟀1min叫了63次,那么该地当时的气温大约为多少摄氏度?(3)能用所求出的函数模型来预测蟋蟀在0℃时所鸣叫次数吗?答:不能,因为此函数关系是近似的,与实际生活中的情况有所不符,蟋蟀在0℃时可能不会鸣叫.2.某商店今年7月初销售纯净水的数量如下表所示:日期123数量(瓶)160165170(1)你能为销售纯净水的数量与时间之间的关系建立函数模型吗?(2)用所求出的函数解析式预测今年7月5日该商店销售纯净水的数量.解销售纯净水的数量y(瓶)与时间t的函数关系式是y=160+(t-1)×5=5t+155.日期123数量(瓶)160165170(1)你能为销售纯净水的数量与时间之间的关系建立函数模型吗?解当t=5时,y=5×5+155=180(瓶).(2)用所求出的函数解析式预测今年7月5日该商店销售纯净水的数量.1、小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O-A-B-C和线段OD分别表示两人离学校的路程(千米)与所经过的时间(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在天一阁查阅资料的时间为__________分钟,小聪返回学校的速度为_______千米/分钟。(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系;(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?s(千米)t(分钟)ABDC304515O24小聪小明【解析】(1)∵30-15=15,4÷15=4/15∴小聪在天一阁查阅资料的时间和小聪返回学校的速度分别是15分钟,4/15千米/分钟.(2)由图象可知,s是t的正比例函数设所求函数的解析式为s=kt(k≠0)代入(45,4),得4=45k解得k=445∴s与t的函数关系式s=445t(0≤t≤45).(3)由图象可知,小聪在30≤t≤45的时段内s是t的一次函数,设函数解析式为s=mt+n(m≠0)代入(30,4),(45,0),得{30m+n=445m+n=0解得{m=-415n=12∴s=-415t+12(30≤t≤45)令-415t+12=445t,解得t=1354当t=1354时,S=445×1354=3.答:当小聪与小明迎面相遇时,他们离学校的路程是3千米.s(千米)t(分钟)ABDC304515O24小聪小明2、A,B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回.如图是它们离A城的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;(2)当它们行驶了7小时时,两车相遇,求乙车速度【解析】(1)①当0≤x≤6时,y=100x;②当6<x≤14时,设y=kx+b,∵图象过(6,600),(14,0)两点,∴∴y=-75x+1050∴∴(2)当x=7时,y=-75×7+1050=525,所以v乙=525÷7=75(千米/小时)1050750146006bkbkbk解得).146(105075)60(100xxxxy3、甲乙两人同时登西山,甲、乙两人距地面的高度(米)与登山时间(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山的速度是每分钟米,乙在地提速时距地面的高度为米.(2)若乙提速后,乙的速度是甲登山速度的3倍,请分别求出甲、乙二人登山全过程中,登山时距地面的高度(米)与登山时间(分)之间的函数关系式.(3)登山多长时间时,乙追上了甲?此时乙距地的高度为多少米?【解析】(1)10,30(2)由图知,t=11∵C(0,100),D(20,300)∴线段CD的解析式:y甲=10x+100∵A(2,30)B(11,300),折线OAB的解析式为:(3)由解得登山6.5分钟时乙追上甲.此时乙距地高度为165-30=135(米)300303102t15(02)3030(211)xtyxt乙≤≤≤101003030yxyx6.5165xyy1y2(1)若目的地距离学校40km,租用哪家租赁公司的汽车合算?你用什么方法来判断?PQ学校组织冬令营需要租用汽车,准备与汽车租赁公司签订租车合同,以用车路程xkm计算.甲汽车租赁公司的租费是y1元,乙汽车租赁公司的租费是y2元.y1y2(2)目的地距离学校多远时,租用两家租赁公司的汽车所需的费用相同?M(60,150)学校组织冬令营需要租用汽车,准备与汽车租赁公司签订租车合同,以用车路程xkm计算.甲汽车租赁公司的租费是y1元,乙汽车租赁公司的租费是y2元.y1y2M(3)若学校租车的预算是200元,那么租用哪家租赁公司的汽车合算?为什么?学校组织冬令营需要租用汽车,准备与汽车租赁公司签订租车合同,以用车路程xkm计算.甲汽车租赁公司的租费是y1元,乙汽车租赁公司的租费是y2元.y1y2M(4)如果根据用车路程来选择汽车租赁公司,你能给些建议吗?说说你的理由.在解决上述问题的过程中,你有什么启发?学校组织冬令营需要租用汽车,准备与汽车租赁公司签订租车合同,以用车路程xkm计算.甲汽车租赁公司的租费是y1元,乙汽车租赁公司的租费是y2元.lBlA1、如图,lA、lB分别表示A步行与B骑车在同一路上行驶的路程s与时间t的关系.(1)B出发时与A相距km;(2)走了一段路后,自行车发生故障,进行修理,所用的时间是h;(3)根据图象,你还能说出一条信息吗?1011、如图,lB、lA分别表示A步行与B骑车在同一路上行驶的路程s与时间t的关系.lBlA(4)若B的自行车不发生故障,保持出发时的速度前进,则出发h与A相遇,相遇点离A的出发点km.你能在图中表示出这个相遇点C吗?15C2、小明和小亮进行了百米赛跑,小丽把他们的竞赛过程用函数图象一一记录下来,若两人在赛跑中距起点的路程s(m)与时间t(s)之间的关系如图所示,根据图象你能叙述他们的跑步过程吗?①②34小明小亮小明小亮③④2、小明和小亮进行了百米赛跑,小丽把他们的竞赛过程用函数图象一一记录下来,若两人在赛跑中距起点的路程s(m)与时间t(s)之间的关系如图所示,根据图象你能叙述他们的跑步过程吗?小亮小明小明小亮x1005058118oy(元)(小时)宝应县上网方式有三种:方式一:每月80元包干;方式二:每月上网时间(x)与上网费用(y)的函数关系如图所示;方式三:以0小时为起点,每小时收费1.6元,月收费不超过120元。(1)写出三种方式的函数关系式。(2)小华家每月上网60个小时,选用哪种方式上网合算?一慢车和一快车沿相同路线从A地到B地,所行的路程与时间的函数图象如图所示.试根据图象,回答下列问题:(1)慢车比快车早出发小时,快车追上慢车时行驶了千米,快车比慢车早小时到达B地;(2)求解下列问题:①快车追上慢车需几个小时?②求慢车、快车的速度.(B)(千米)y快车276X181420(A)(小时)慢车

1 / 40
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功